
 

  

Abstract— When cognitive radios operate in a network, each 

link’s adaptations impact the decisions of other cognitive radios 

which spawns an interactive decision processes. The existence of 

these interactive processes could potentially limit the deployment 

of cognitive radios as it is difficult to guarantee that the resulting 

behavior will avoid a tragedy of the commons, much less provide 

optimal performance. This paper proposes a novel design 

framework that ensures that cognitive radio interactions are 

beneficial and reduce sum network interference with each 

adaptation. Five different approaches to implementing algorithms 

that satisfy this framework are presented – two of which rely on 

collaboration and three which permit autonomous adaptations.  

I. INTRODUCTION 

HEN multiple cognitive radios (CR)s operate in close 

proximity, the adaptation of each CR changes the state 

of the network, potentially influencing the decision processes 

of the other CRs. These interactions complicate the design and 

analysis of CR algorithms and could hinder the deployment of 

CRs. To address this problem, game theory has been proposed 

for the analysis and modeling of CRs [1], [2]. This paper 

moves beyond modeling and analysis by leveraging concepts 

from game theory to introduce a novel design framework for 

CR algorithms that ensures that these interactive processes 

lead to states which minimize sum network interference. We 

formally introduce this interference reducing network 

framework in Section 5 after covering related work in Section 

2, the general application of game theory to CR networks in 

Section 3, and a critical game model in Section 4.  Sections 6 

and 7 present collaborative and greedy approaches to 

implementing the design scenarios, show theoretically that the 

algorithms satisfy the design framework, and present selected 

simulations of these algorithms.  
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II. RELATED WORK 

Past work on waveform adaptation algorithms has focused on 

systems with a single receiver and multiple transmitters. For 

the uplink of a synchronous CDMA system with a single base-

station, [3] and [4] propose an algorithm where the system 

updates the signature sequence, sk, of each user, k, in a round-

robin fashion where each update is intended to improve the 

SINR of user k at the base-station which is implementing a 

Minimum Mean Square Error (MMSE) receiver. Specifically, 

given signature sequence sk(n) at iteration n the updated 

signature sequence is given by (1) 
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additive white Gaussian noise at the receiver. It is shown that 

the round-robin application of (1) results in a monotonically 
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Technically, this is not the same problem as we consider as 

there is only a single decision maker (the base station) and thus 

no interactive decision process. However, it is trivial to recast 

this problem as one where the mobiles are performing this 

process as other authors have done. For instance, [5] presents 

these same algorithms in a distributed fashion and using a 

general signal space approach though still with the centralized 

receiver. This same algorithm is applied to asynchronous 

CDMA systems in [6], multipath channels in [7], and multi-

carrier systems in [8]. 

 Waveform adaptation in networks with multiple 

collaborative receivers is investigated in [9] and [10]. 

Specifically, the waveforms of different mobiles 

communicating with different base stations are jointly 

controlled to minimize the total interference perceived by the 

mobiles. In [9], fixed points of greedy waveform adaptation 

algorithms in these networks are analyzed. In [10], the user’s 

utility function is defined in terms of the weighted sum of the 

interference caused by the particular user at all the receivers in 

the system; this formulation is then used to prove the existence 

of Nash equilibria for the system. In each of these algorithms, 

all devices attempt to minimize a common function which is 

the sum of all interference observed in the network. 
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 [11] analyzes waveform adaptation for a centralized 

network from a game theoretic perspective. It is shown that 

any game where the players have one of several combinations 

of performance metrics (such as Mean Square Error or SINR) 

and receiver types (such as a correlator or MSINR receiver) 

results in convergent NE solutions. [12] considers a dynamic 

frequency selection (DFS) algorithm wherein closely located 

radios are autonomously adapting their frequencies to 

minimize their perceived interference.  

 We can cast these papers into the operational scenarios 

identified in this paper as follows. Specifically, [3,5,6,7,8,11] 

study systems that represent specific instantiations of the 

isolated cluster scenario of Section 7.  [9,10] represent special 

cases of the globally altruistic scenario of Section 6. Finally, 

[12] is an example of the close proximity network scenario of 

Section 7. 

 Beyond showing that numerous independently proposed 

algorithms can be bundled into a single design framework, this 

paper also develops new implementation approaches which 

greatly enhance the scalability of implementations of 

interference reducing network algorithms. While numerous 

different waveform adaptations can be imagined, for 

compactness simulations in this paper are restricted to 

examples of DFS algorithms and spreading code adaptation. 

 

III. GAME THEORY AND CR NETWORKS 

In a traditional game model of a CR network [2], each CR 

represents a player, the adaptations available to each CR form 

the action set of its associated player, and the CR’s goal 

supplies the utility function for its player. A single iteration of 

adaptations by a network of CRs can then be modeled as a 

normal form game, Γ=〈N,A,{ui}〉, where N denotes the set of 

players (radios) of cardinality n and i∈N specifies a particular 

player, A represents the adaptation space formed as 

1 n
A A A= × ×�  where Ai  specifies the action set of player i, 

{ui} is the set of utility functions, :
i

u A → � , that describe the 

values which the radios assign to points in A. For notational 

convenience, we write a to refer to an action vector wherein 

each player in the game has chosen an action, ai to refer to the 

action (waveform) chosen by player i, and a-i to refer to the 

vector formed by considering all actions other than the action 

chosen by i.  

 This basic model can be extended for the purposes of 

further analysis by considering the specific decision rules, 

:
i i

d A A→  that guide the radios’ adaptations and the decision 

timings, T, at which the decisions are implemented to form the 

tuple, 〈N,A,{ui},{di},T〉 [13]. With this model it is sometimes 

convenient to use d(a) to refer to the collective application of 

di(a) at the times specified by T. To give an intuitive feel for 

what we are modeling, the term “decision rule” refers to some 

well-defined process that controls a CR’s adaptations which 

has presumably been designed so as to increase the value of ui 

with each adaptation. For example, a decision rule may specify 

discrete steps up or down in response to observed channel 

conditions or may specify a sequence of alternate frequencies 

to try when interference is detected. However, some CRs are 

not implemented with well-defined decision rules and are 

instead only lightly governed by goals, policies, and available 

adaptations. To handle both of these cases, we restrict our 

design framework to a set of decision rules which we term 

autonomously rational which satisfy (3). 
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A game theorist would refer to the behavior which results from 

the use decision rules of this form as a better response 

dynamic. Similarly, an exhaustive better response dynamic 

occurs when all decision rules satisfy (4).  

 ( ) ( ) ( )if : , ,
i i i i i i i i i i

a d a b A u b a u a a− −∉ ∃ ∈ >  (4) 

A. Steady State Analysis of CR Networks 

We leverage techniques from game theory to characterize the 

steady-states and the convergence of the CR networks 

designed using the proposed framework. In game theory, the 

traditional “steady-state” concept is the Nash equilibrium (NE) 

which is an action vector a
*
 where ( ) ( )* *

,i i i iu a u b a−≥  

,
i i

i N b A∀ ∈ ∈ . It is clear that the NE of the normal form game 

model of a CR network are fixed points for autonomously 

rational decision rules and are the only fixed points for 

exhaustive better response dynamics. 

 Theorem 1: Given CR network 〈N,A,{ui},{di},T〉 where all 

players are autonomously rational, if a
* 

is an NE for
 〈N,A,{ui}〉, then a

*
 is a fixed point for d.  

Proof: Suppose a
*
 is not a fixed point. Then for some i N∈ , 

there must be some ( )*

i ib d a∈ with *

i i
b a≠  such that 

( ) ( )* * *
, ,i i i i i iu b a u a a− −> . But this contradicts the assumption 

that a
*
 is an NE. Therefore, a

*
 must be a fixed point for d.■ 

 Theorem 2: Given CR network  〈N,A,{ui},{di},T〉  where all 

decision rules are exhaustive better responses, a
*
 is a fixed 

point of d iff a
*
 is an NE for 〈N,A,{ui}〉. 

Proof: Sufficiency is supplied by Theorem 1. Suppose a
*
 is a 

fixed point of d but not an NE. As a
*
 is not an NE, there is 

some player i with ** *

i i
a a≠  such that ( ) ( )** * * *

, ,i i i i i iu a a u a a− −> , 

but this contradicts the assumption of an exhaustive better 

response.■ 

B. Convergence Analysis of CR Networks 

To examine convergence properties, we consider the concept 

of improvement paths in games and the Finite Improvement 

Property (FIP) as defined in [14]. A path in Γ is a sequence γ 

= (a
0
, a

1
,…) such that for every k ≥ 1 there exists a unique 

player such that the strategy combinations (a
k-1

, a
k
) differ in 

exactly one coordinate. An improvement path is a path such 

that for all k≥1, ( ) ( )1k k

i iu a u a
−> where i is the unique 

deviator at step k. The improvement path, γ = (a
0
, a

1
,…,a

k
), is 

exhaustive if there is no  a
k+1

 such that an improvement path 

exists from a
k
 to a

k+1
. A game, Γ=〈N,A,{ui}〉, is said to have to 

have the finite improvement property (FIP) if all improvement 

paths in Γ are finite. 

 An example of a game with FIP is shown in matrix form 

representation in Figure 1. All of the possible action vectors in 



 

the game’s action space are arrayed in a matrix such that 

player 1’s actions (the first component of the action vector) are 

given by the rows of the matrix and player 2’s actions (the 

second component of the action vector) are given by the 

columns of the matrix. Each cell in this matrix is thus 

determined by a unique action vector (row, column) and is 

filled with the payoff vector associated with the cell’s action 

vector. A complete listing of the improvement paths for this 

game is given in Table 1. From our exhaustive listing, we can 

readily establish that this game has FIP and that the longest 

path has a length of 3.   

γ2
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γ3
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γ6γ2

γ1
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Figure 1: Prisoners’ Dilemma Game Matrix for Improvement 

Path Analysis. 

Table 1: Improvement Paths for Game Presented in Figure 1. 

γ1 = ((a, A), (a, B)) γ3 = ((b, A), (b, B)) 

γ2 = ((a, A), (b, A)) γ4 = ((a, B), (b, B)) 

γ5 = ((a, A), (a, B), (b, B)) 

γ6 = ((a, A), (b, A), (b, B)) 

 

However, not all games have FIP as illustrated in Figure 2 

where an infinite improvement path is given by the sequence 

( ) ( ) ( ) ( )( ), , , , , , , ,a A b A b B a A … .  

 A B 

a (0,1) (1,0) 

b (1,0) (0,1) 

Figure 2: A Game without FIP 

Showing that a game has FIP permits several immediate 

insights such as shown in Theorems 3 and 4 which are well-

known in the game theory community. 

 Theorem 3: All games with FIP have at least one NE.  

Proof: By FIP there must be at least one action tuple, a
*
, from 

which there exists no profitable unilateral deviation. This 

action tuple a
*
 must be an NE as there exists no other 

a A∈ such that ( ) ( )* *,i i i iu a a u a− > .■ 

 Theorem 4: All exhaustive improvement paths in a game 

with FIP end in an NE.  

Proof: Suppose the improvement path does not terminate, then 

the sequence is an infinite improvement path in contradiction 

of the assumption of FIP. Suppose an exhaustive improvement 

path terminates in action tuple, a
*
 which is not an NE. Then 

this contradicts the assumption that the sequence is exhaustive 

as for some player i there exists an ai such that  ( )*
,i i iu a a− >  

( )* *
,i i iu a a− .■ 

 Thus for systems which can be modeled as having 

exhaustive better response decision rules and restrict 

adaptations to one radio at a time, showing that the network’s 

game model has FIP is sufficient to be assured of convergence 

to an NE. However, this result can be strengthened to a more 

general timing model – the asynchronous timing model where 

for each t T∈  each player, i, has probability 0<pi<1 of 

implementing its decision process (perhaps due to an internal 

random timer). Let MΓ be the Markov chain that results when 

players in Γ=〈N,A,{ui}〉 operate under an asynchronous timing 

model and apply exhaustive better response decision rules to 

the previous state (action tuple) to form the next state. Without 

knowing the radios’ specific decision rules, we cannot write a 

transition matrix for MΓ. However, we can make some 

inferences about MΓ. 

 Theorem 5: An action tuple, a
*
, is an absorbing state for MΓ 

iff a
*
 is an NE. 

Proof: Suppose a
*
 is an NE, but not an absorbing state. Then 

there must exist some other state to which there is a nonzero 

probability of the system transitioning from a
*
. Under the 

assumption of better response decision rules in MΓ, 

nonabsorption implies that there is some player i such that 
*

i ia a≠ , ( ) ( )* * *, ,i i i i i iu a a u a a− −> . However this contradicts 

the assumption that a
*
 is an NE. Now suppose a

*
 is an 

absorbing state but not an NE. As a
*
 is not an NE, there is 

some player i with *
i ia a≠  such that ( )*,i i iu a a− >  ( )* *,i i iu a a− . 

As MΓ assumed 0ip i N> ∀ ∈  and exhaustive better 

responses, the probability of transitioning from a
*
 must be 

greater than 0. However, this contradicts the assumption that 

a
*
 is an absorbing state.■ 

 Theorem 6: If Γ=〈N,A,{ui}〉 has FIP, then MΓ is an 

absorbing Markov chain.  

Proof: A Markov chain is an absorbing Markov chain if from 

every state there exists a sequence of state transitions of 

nonzero probability that terminates in an absorbing state. 

Given a A∈ , let γa be an exhaustive improvement path that 

terminates in an NE, ( ),an tγ  be the player that adapts at step t 

of γa, and ( )an γ  be the sequence of adapting players in γa. 

Under an asynchronous timing model, the probability that only 

( ),an tγ  adapts at a particular iteration is given 

by ( ) ( )
( )

,

\ ,

1
a

a

kn t

k N n t

p pγ
γ∈

−∏  and that starting from a, the 

sequence of adapting players is ( )an γ  is given by 

( ) ( )
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,
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∏ ∏ . As this last expression 

is greater than zero and as every NE in Γ is an absorbing state 

of MΓ, γa specifies a sequence of state transitions of nonzero 

probability that terminates in an absorbing state. By Theorem 

4 there exists an γa for every a∈A, thus from every state there 

exists a sequence of state transitions of nonzero probability 

that terminates in an absorbing state.■ 

 

IV. POTENTIAL GAMES 

While the knowledge that the game model of a CR network 

has FIP permits valuable insights into what kinds of decision 

rules will converge to NE (all exhaustive better responses 



 

under unilateral or asynchronous timings), showing that the 

game model has FIP can be arduous. Fortunately, a readily 

identifiable class of games known as potential games can be 

shown to have FIP. A normal form game, Γ=〈N,A,{ui}〉, is said 

to be an exact potential game if there exists a function, 

:V A → � , known as an exact potential function, that satisfies 

( ) ( ) ( ) ( ), , , ,i i i i i i i i i iu b a u a a V b a V a a− − − −− = − ,i N a A∈ ∀ ∈ . 

An obvious way to construct an exact potential game is for 

every player to have the same utility function, e.g., as shown in 

(5) where :C A → � . 

 ( ) ( )iu a C a=  (5) 

Such a game is called a coordination game and has and exact 

potential function given by V = C. Another exact potential 

game form was introduced in [15] where every player’s utility 

function is of the form shown in (6) 

 ( ) ( ) ( )
\

,i ij i j i i

j N i

u a w a a S a

∈

= −∑  (6) 

where :ij i jw A A× → � and :i iS A → � such that for every 

( ),i j i ja a A A∈ × , ( ) ( ), ,ij i j ji j iw a a w a a= . Such a game is 

called a bilateral symmetric interaction (BSI) game and has an 

exact potential function given by (7). 

 ( ) ( ) ( )
1

1

,

i

ij i j i i

i N j i N

V a w a a S a

−

∈ = ∈
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(7) can be verified as an exact potential function for BSI 

games by evaluating the change in (6) and (7) when an 

arbitrary player i changes its action from ai to bi while the 

vector of the remaining players actions, a-i is held constant.  

( ) ( ) ( ) ( )

( ) ( )
\ \
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Additional potential game forms are given in Chapter 5 of 

[13].  

 Theorem 7: If Γ=〈N,A,{ui}〉 is an exact potential game with 

potential function V and finite A, then Γ has FIP. 

Proof: (Along the lines of a proof given in [14]) Suppose 

Γ=〈N,A,{ui}〉 is an exact potential game with potential V. Now 

consider any improvement path γ = (a
0
, a

1
,…) in A. Then 

( ) ( )1k k
i iu a u a+ > where i is the unique deviator at step k+1. 

As Γ is an exact potential game, 

( ) ( ) ( ) ( )1 1k k k k
i iu a u a V a V a+ +> ⇒ > . Then V(a

0
)< V(a

1
)< 

�   and V(γ) forms a monotonically increasing sequence. 

Since A is finite and V(γ) is monotonic, γ must be finite.■ 

 While potential games with infinite action spaces do not 

generally possess the FIP, autonomously rational decision 

rules under unilateral timing still yield a monotonically 

increasing V.  If these infinite action spaces are bounded, some 

decision rules can still be shown to converge by applying 

Convergence Theorem A from [16]. 

 Theorem 8: Let d:A→A determine an algorithm that given a 

point a
0
 generates a sequence ( )

0

ka
∞

 through the iteration 

a
k+1∈ d(a

k
). Let a solution set, S

*⊂ A, be given. Suppose (1) 

All points  ( )
0

ka
∞

are in a compact set S⊂A. (2) There is a 

continuous function : Aα → � such that:  (a) if *a S∉ , then 

( ) ( ) ( )' 'a a a d aα α> ∀ ∈ ; (b) if *a S∈ , then 

( ) ( )'a aα α≥ ( )'a d a∀ ∈ . (3) d is closed at a if a∉S
*
. Then 

either the recursion a
k+1∈ d(a

k
) arrives at a solution (fixed 

point), or the limit of any convergent subsequence of ( )
0

ka
∞

 is 

in S
*
. 

Proof: A proof of this theorem is given in [16].■ 

 Theorem 9: Given an exact potential game with a compact 

action space A and potential V, if the following conditions 

hold, then the recursion ( )1k ka d a+ ∈ converges.  

1) V is continuous; 2) di is autonomously rational i N∀ ∈ ; 3) d 

is closed. 

Proof: This is just an application of Theorem 8 with α=V. 

Thus d converges to some * *a D∈ where D
*
 are the set of 

fixed points for d.■ 

 Finally, potential games also permit the following well-

known characterization of a game’s NE. 

 Theorem 10: Given exact potential game, Γ=〈N,A,{ui}〉 

with potential function V, if ( )*
max
a A

a V a
∈

=
 
then a

*
 is an NE.  

Proof: Suppose ( )*
max
a A

a V a
∈

= is not an NE. As a
*
 is not an 

NE, there is some player i with ** *
i ia a≠  such that 

( ) ( )** *
i i i iu a u a> . But this implies that ( ) ( )** *

i iV a V a>  and 

contradicts the assumption that ( )*
max
a A

a V a
∈

= . Therefore a
*
 

must be an NE.■ 

 Note that the set of global maximizers of a game’s potential 

function need not capture all of the NE as local maximizers of 

V can also be NE and “elusive NE” have been shown to exist 

in potential games with infinite action spaces [17]. A lengthier 

discussion of the properties of potential games is given in 

Chapter 5 of [13]. 

 

V. INTERFERENCE REDUCING NETWORKS 

Unfortunately, simply because decision rules converge to a 

maximizer of the potential function, this does not imply that 

the associated NE is desirable. For example the game 

previously shown in Figure 1 is an exact potential game with a 

potential function as shown in Figure 3. Note that (b, B) 

maximizes V and is the game’s only NE, but (a, A) is 

preferable to (b, B) for both players. 



 

V(⋅) A B 

a 0 5 

b 5 6 

Figure 3: Exact Potential Function for Game in Figure 1. 

 Thus while applying potential games to the design of CR 

networks will ensure convergence to a set of readily defined 

equilibria for a broad range of decision rules, there is no 

guarantee that these equilibria are desirable. This section 

addresses this problem via a novel framework that ensures the 

game model of a CR network has a potential function whose 

maximizers minimize sum network interference.  

 Let ( ) , :i iI a I A → � , represent the interference that CR i 

observes based on the actions of the other radios in the 

network. From these observations, we form the network 

interference function,  Φ(a), by summing these terms as shown 

in (8). 

 ( ) ( )i

i N

a I a

∈

Φ =∑  (8) 

A CR network, 〈N,A,{ui},{di},T〉, is said to be an interference 

reducing network (IRN) if all unilateral autonomously rational 

adaptations decrease the value of Φ.  From our discussion in 

Section 4, it is apparent that an IRN can be implemented via 

potential game networks when VΦ ∝ − . In the following 

sections we examine how the goals and observation processes 

of CRs can be shaped to achieve this result.  

 

VI. ALTRUISTIC INTERFERENCE REDUCING NETWORKS 

An obvious technique to achieve an IRN is to assign each 

radio coordination game goals of the form ui(a)=-Φ(a). We 

term such an implementation a globally altruistic IRN as each 

radio is directly working to reduce the sum of every radio’s 

observed interference. While this is a potential game of the 

desired form, i.e., V(a)=-Φ(a), an implementation of such a 

CR network is not very practical as each radio must distribute 

to every other radio its observed interference Ii(a). While this 

approach is likely unsuitable for implementation due to 

scalability concerns, [18] defines one possible means for 

distributing the global interference measurements throughout 

the network, namely a radio environment map to which each 

radio can poll and report observations. Further, several 

proposed algorithms effectively realize a globally altruistic 

IRN. [19] proposes a DFS algorithm where the radios are 

guided by minimization of the sum network interference but 

with estimations of other radios’ interference levels. Likewise, 

the algorithms of [9] also satisfy the conditions of a globally 

altruistic network as applied to spreading code adaptations. 

 Limiting the scalability issues, an altruistic IRN can also be 

created if the radios consider the interference levels observed 

by subsets of radios. Let \i N iℑ ⊆  denote the set of radios 

where the signal level of radio i is strong enough to produce 

non-negligible interference. Then if each radio is guided by 

goals of the form shown in (9) 

 ( ) ( ) ( )
i

i k i

k

u a I a I a

∈ℑ

= − −∑  (9) 

an exact potential function is still given by V(a)=-Φ(a) as 

( )
\ i

k

k N

I a

∈ ℑ

∑ =0 in our model and 

( ) ( ) ( ) ( )

( ) ( )

, , , ,

, ,

i i

i i i i i i k i i k i i

k k

i i i i i i

u a a u b a I b a I a a

I a a I b a

− − − −

∈ℑ ∈ℑ

− −

− = − −

+
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( ) ( ) ( ) ( )

( ) ( )

, , , ,

, ,

i i

i i i i k i i k i i

k k

i i i i i i

V a a V b a I b a I a a

I a a I b a

− − − −

∈ℑ ∈ℑ

− −

− = − −

+

∑ ∑

 

In general, this approach will consume less bandwidth to 

distribute the interference information, but in dense networks, 

the overhead can still be quite significant. 

 

VII. GREEDY INTERFERENCE REDUCING NETWORKS 

Unfortunately, altruistic IRNs necessarily incur significant 

information distribution costs and greedy algorithms, while 

incurring less overhead, cannot generally be assured of having 

desirable steady-states. However, by restricting our networks 

to a certain set of conditions, which we term bilateral 

symmetric interference (BSI), we can create greedy algorithms 

which realize IRNs. Thus when BSI holds, we can get the 

benefit of the coordination equilibria, but without the overhead 

by implementing greedy algorithms!  

 We say that two CRs, ,j k N∈ , exhibit BSI if gjkpjρ(aj, ak) 

= gkjpkρ(ak, aj) ,j j k ka A a A∀ ∈ ∀ ∈  where pk is the 

transmission power of radio k’s waveform, gkj is the link gain 

from the transmission source of radio k’s signal to the point 

where radio j measures its interference, ρ(ak,aj) is the fraction 

of radio k’s signal power that interferers with radio j. In 

general, ρ(ak,aj) is determined by the absolute value of the 

correlation between the signal space basis functions modulated 

by ak and aj.  

 Now assume that the radios are guided by a greedy goal as 

shown in (10).  
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Under the assumption of BSI (10) is an example of a goal for a 

bilateral symmetric interaction game as shown in (6) where 

( ) ( ), ,ij i j ji j j iw a a g p a aρ= . Thus, an exact potential function 

exists for these games of the form shown in (11) and Φ(a) =    

-2V(a). 
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Thus sequences of unilateral greedy adaptations will increase 

V and decrease Φ which means that when BSI holds, 

algorithms that seek to minimize a radio’s own interference 

will implement an IRN under unilateral and asynchronous 

timings and will converge to a minimizer of Φ for exhaustive 

greedy better responses.  



 

 To establish that the BSI condition holds we must show that 

ρ(ak,aj) = ρ(aj,ak)  and gkjpj = gjkpk.  We frequently encounter 

situations where ρ(ak,aj) = ρ(aj,ak) such as adjacent and co-

channel interference from channel (frequency) selection or the 

cross correlation between signature sequences. However there 

are some waveform adaptations for which this equality does 

not hold, most notably in beam forming applications. 

Additionally, differences in power or link gains can lead to 

violations of the BSI condition. Nonetheless, the following 

considers three different scenarios where BSI holds. 

A. Isolated Clusters with Power Control 

Encountered in infrastructure based networks employing code 

or frequency reuse, in the isolated clusters scenario, the system 

consists of a set of clusters C for which the following 

operational assumptions hold: 

1. Perhaps through judicious frequency or code reuse 

between clusters, each radio i is operating in a cluster 

c∈C for which iℑ  is a subset of c. 

2. The cluster head (or access point or base station) 

enforces a uniform receive power, rc, on all radios k for 

signals transmitted to the cluster head. 

3. Waveforms are restricted to those waveforms for which 

ρ(ak,aj) = ρ(aj,ak) .  

4. The radios implement autonomously rational decision 

rules guided by (10) as measured at the cluster head 

with either unilateral or asynchronous timing. 

These assumptions are sufficient to establish that BSI holds. 

By assumption 1, gjkpjρ(aj, ak) = gkjpkρ(ak, aj) = 0 whenever j 

and k are in different clusters. For radios in the same cluster, 

assumption 2 implies gkjpj = gjkpk and assumption 3 requires 

ρ(ak,aj) = ρ(aj,ak). Thus BSI holds for all pairs of radios within 

a cluster and across clusters, and assumption 4 supplies the 

requisite requirements of autonomous rationality and timing.  

 Though formulated differently and generally considering 

specific decision rules instead of any greedy decision rule 

guided by (10), such a set of assumptions is implicitly utilized 

in [3, 5-8, 11] for spreading code adaptations. To give an 

intuitive feel for how such a system performs Figure 4 depicts 

the results of a simulation of seven radios adapting their 

spreading codes over the surface of a six-dimensional 

hypersphere code-adapting (so orthogonal codes are not 

achievable) guided by (10) as measured at a common cluster 

head with a constant received power of -50 dBm with one 

radio adapting at a time and starting from an initial random 

assignment of spreading codes. The top plot shows the 

measured interference levels for the each of the cognitive radio 

and the bottom plot shows Φ(a) for the network. Note that 

each adaptation reduces the value of Φ(a) as predicted by 

virtue of being an IRN although individual radios interference 

levels may increase.  

 
Figure 4: Simulation of seven code-adapting CRs in an 

isolated cluster. 

B. Close Proximity Networks 

In this operational scenario it is assumed that the radios are 

operating as an ad-hoc network in sufficiently close proximity 

and transmitting with sufficiently similar power levels that 

waveform correlation dominates making the distance and 

transmitted power effects negligible. Such a scenario may arise 

in a network of closely spaced WLAN devices where the 

presence of any in-band energy triggers a collision event, 

although such a network would constitute an effective IRN as 

opposed to the strict IRN. Under these assumptions differences 

in received powers are negligible and (10) is equivalent to (12)

. 
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If we assume that ρ(ak,aj) = ρ(aj,ak), the system satisfies the 

BSI condition and forms an IRN for autonomously rational 

decision rules for unilateral or asynchronous timing.  

C. Controlled Observation Processes 

It is also possible to achieve the BSI condition by controlling 

the observation processes of the CRs in addition to the goals 

and decision processes. For instance suppose a network 

consists of a collection of 802.11 clusters where each cluster is 

controlled by a fixed access node whose channel selections are 

guided by (10). To this we add the restriction that the only 

observation made by an access node are the received signal 

power of the RTS/CTS signals transmitted by other access 

nodes as detected by the cognitive access node. By making this 

restriction of observations, we know the following:  

• All observed signals are transmitted at the same power 

level, p, as RTS/CTS messages are generally transmitted at 

ma x i mu m p o we r  t o  c l e a r  o u t  h i d d e n  no d e s . 

• A symmetric link gain exists between the transmission 

points and observation points of pairs of CRs. Specifically, 

the gain from access node j to access node k, gjk, is the same 

as the gain from access node k to access node j, gkj.
1
 

 
1 It is permissible that link gains between access nodes are frequency 

selective, but frequency selectivity of the gains must be reciprocal as well, 



 

Then by restricting the adaptation choices to a selection of 

channels, we have   
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for orthogonal channel sets (such as in the UNII bands) and  

 ( ) ( ){ }, max / ,0j k j ka a B a a Bρ = − −  (14) 

for non-orthogonal channel sets (such as in the ISM bands) 

where B is the signal bandwidth. Such a network could be 

encountered in an enterprise WLAN installation where 

multiple access nodes with the same maximum transmit power 

level are deployed throughout a building or in an infrastructure 

based WRAN deployment, thereby ensuring that the access 

nodes all have the same maximum transmit power.  

 To illustrate the operation of such a system, Figures 5 and 6 

depict the results of two simulations of thirty access nodes 

randomly distributed over 1 km
2
 with a path loss exponent of 3 

guided by (10) and unilaterally adapt their clusters’ center 

frequencies over 10 MHz of nonorthogonal channels while 

supporting 1 MHz bandwidth signals implying correlations of 

the form shown in (14). The top plot depicts the operating 

frequencies of each radio starting from random initial 

distributions of frequencies; the middle plot shows the 

evaluation of the goals of all the radios in the network; the 

bottom plot shows the value of Φ. While the networks 

converge to different steady-state frequency distributions, in 

both cases, Φ(ω) forms a monotonically decreasing sequence 

as predicted by the IRN framework. The results of a simulation 

with the same access points but with asynchronous timing and 

the European UNII channel set (implying correlations take the 

form shown in (13) is shown in Figure 7. While Φ still trends 

down, it no longer does so monotonically as pairs of radios 

will occasionally adapt onto the same channel raising net 

interference. Nonetheless, because this system forms an 

absorbing Markov chain as predicted in Section 5, it 

eventually converges to a frequency vector that is a minimizer 

of Φ.  

                                                                                                     

i.e., ( ) ( )ik i ki ig f g f= . For purposes of analysis, this frequency selectivity 

can be considered a part of ρ(ak,aj). 

 
Figure 5: 30 randomly distributed DFS nodes adapting to 

interference measured at the transmitter. 

 
Figure 6: Simulation of system in Figure 5 with different initial 

frequencies.



 

Table 2: Scenario Comparisons 

Scenario 

Special 

Topology 

Waveform 

Restrictions 

Observation 

Restrictions 

Relative 

Overhead 

Globally Altruistic N N N Very High 

Locally Altruistic N N N High 

Isolated Cluster Y Y N Low 

Close Proximity Y Y N Low 

Controlled Observation N Y Y Very Low 

 
 

 

Figure 7: Controlled Observation Scenario in UNII bands 

under Asynchronous Timing. 

VIII. SUMMARY AND DIRECTIONS FOR FUTURE RESEARCH 

This paper proposed a powerful new framework for the design 

of cognitive radio algorithms – the interference reducing 

network – for which each adaptation improves network 

performance for all autonomously rational decision rules under 

the five scenarios considered in Sections 6 and 7. In the 

altruistic scenarios the radios attempt to minimize other radios’ 

observed interference in addition to their own. By doing this, 

no special requirements need to be placed on the topology of 

the network, the available waveforms nor the observation 

processes of the radios. However, the network must consume 

significant bandwidth to distribute the radios’ observations. In 

the greedy scenarios, the radios act only to reduce their own 

interference. This eliminates the need to distribute 

observations other than between reception and decision points 

of a single link. However, to realize an IRN in the greedy 

scenarios the BSI condition must hold which places 

restrictions on the topology, waveforms, and/or observation 

processes of the radios. These tradeoffs between these 

approaches to implementing an IRN are summarized in Table 

2. Noting the fundamental tradeoff between external and 

internal observations, namely complexity versus 

generalizability, an interesting line of research becomes 

immediately apparent – how can cognitive radios recognize 

when they are operating under the BSI condition so higher 

efficiency networks can be implemented? 

 

This is not an exhaustive listing of IRN implementation 

scenarios. For instance, receive beam forming adaptations 

would violate the reciprocal correlation property, yet will 

implement an IRN for any network topology and greedy 

algorithms.
2
 The examples considered in this paper should 

represent only a fraction of CR networks that could be 

designed to achieve an IRN and only a fraction that satisfy the 

BSI condition. It should be possible to identify additional 

IRNs by considering alternate topology and observation 

constraints, adaptations beyond frequency and spreading 

codes, and combinations of constraints and multiple adaptable 

waveform parameters.   
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