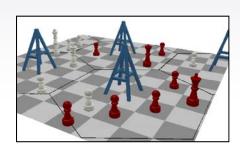

Practical Considerations for Cognitive Radio NetworkingEnvironments


James "Jody" Neel james.neel@crtwireless.com

SDR '10

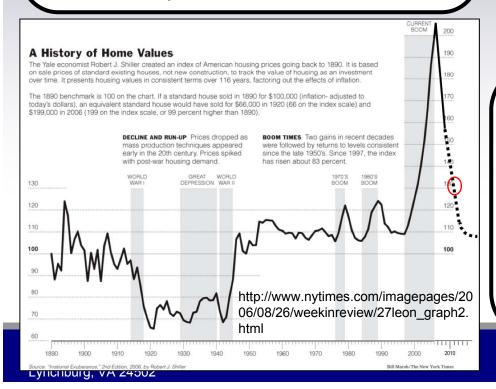
(CRT

Cognitive Radio Technologies

Material

- Interactions of CRs
- Impact of Hostile Users

Web: www.crtwireless.com


(540) 230-6012

Email: info@crtwireless.com

Security Issues

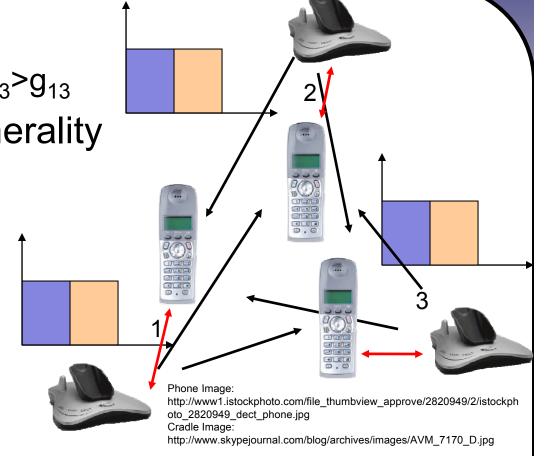
Issues Can Occur When Multiple Intelligences Interact

- Flash Crash of May 6, 2010
 - Not just a fat finger
 - Combination of bad economic news, big bet by Universa, and interactions of traders and computers

http://www.legitreviews.com/images/reviews/news/dow_drop.jpg

- Housing Bubble
 - Bounce up instead of down
 - Slower interactions lead to slower changes
 - Also indicative of the role beliefs play in instability

Ph: (540) 230-6012 Email: info@crtwireless.com


In heavily loaded networks, a single vacation can spawn an infinite adaptation process

- Suppose
 - $-g_{31}>g_{21};g_{12}>g_{32};g_{23}>g_{13}$
- Without loss of generality

$$-g_{31}, g_{12}, g_{23} = 1$$

$$-g_{21}, g_{32}, g_{13} = 0.5$$

- Infinite Loop!
 - -4,5,1,3,2,6,4,...

Interference Characterization


Chan.	(0,0,0)	,	,	(0,1,1)	,	,	` ,	` ′
Interf.	(1.5,1.5,1.5)	(0.5,1,0)	(1,0,0.5)	(0,0.5,1)	(0,0.5,1)	(1,0,0.5)	(0.5,1,0)	(1.5,1.5,1.5)

Generalized Insights from the DECT Example

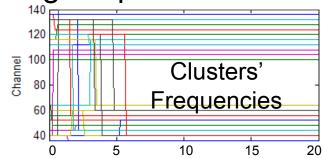
- If # links / clusters > # channels, decentralized channel choices will have a non-zero looping probability
- As # links / clusters →∞, looping probability goes to 1
- Can be mitigated by increasing # of channels (DECT has 120) or reducing frequency of adaptations (DECT is every 30 minutes)
 - Both waste spectrum
 - And we're talking 100's of ms for vacation times
- "Centralized" solutions become distributed as networks scale
 - "Rippling" in Cisco WiFi Enterprise Networks
 - www.hubbert.org/labels/Ripple.html
- Also shows up in more recent proposals
 - Aug 2009 White Spaces paper from Microsoft
- Major reason most routing algorithms are not load sensitive

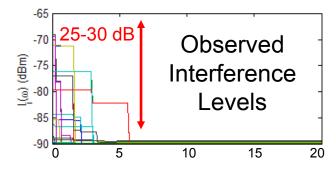
Potential games yield predictable interactions

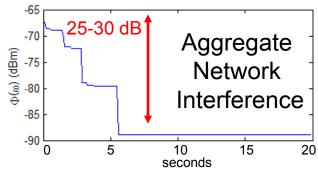
- Existence of a function (called the potential function, V), that reflects the change in utility seen by a unilaterally deviating player.
- Cognitive radio interpretation:
 - Every time a cognitive radio unilaterally adapts in a way that furthers its own goal, some real-valued function increases.
- Our use:
 - Predictable, stable emergent behavior
 - Behavior inconsistent with the goals will immediately break the monotonicity

Potential Game	Relationship $(\forall i \in N, \forall a \in A)$				
Exact (EPG)	$u_i(b_i, a_{-i}) - u_i(a_i, a_{-i}) = V(b_i, a_{-i}) - V(a_i, a_{-i})$				
Weighted (WPG)	$u_i(b_i,a_{-i}) - u_i(a_i,a_{-i}) = \alpha_i \left[V(b_i,a_{-i}) - V(a_i,a_{-i})\right]$				
Ordinal (OPG)	$u_i(b_i, a_{-i}) - u_i(a_i, a_{-i}) > 0 \Leftrightarrow V(b_i, a_{-i}) - V(a_i, a_{-i}) > 0$				
Generalized Ordinal (GOPG)	$u_i(b_i, a_{-i}) - u_i(a_i, a_{-i}) > 0 \Rightarrow V(b_i, a_{-i}) - V(a_i, a_{-i}) > 0$				
Generalized ε (GεPG)	$u_{i}\left(b_{i}, a_{-i}\right) > u_{i}\left(a_{i}, a_{-i}\right) + \varepsilon_{1} \Rightarrow V\left(b_{i}, a_{-i}\right) > V\left(a_{i}, a_{-i}\right) + \varepsilon_{2}$				

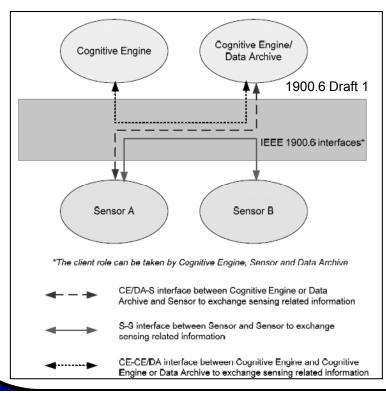
'n

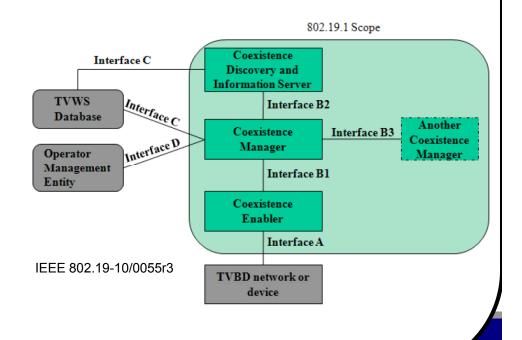

Example behavior


• For example, for a collection of 802.11 clusters independently choosing operating frequencies


All self-interested adaptations

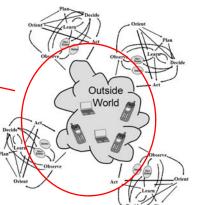
- No synchronization required
- 2. Based only on observations of own performance
 - No information exchange overhead
 - More responsive network
- 3. Decrease aggregate network interference
 - Self-stable
 - Converges to local-optima

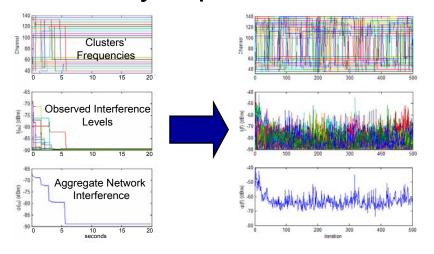




No network is an island

- Many TVWS standards
 - 802.22 (CR for rural)
 - 802.16h (CR WiMAX)
 - 802.11af (WhiteFi)
 - CogNeA

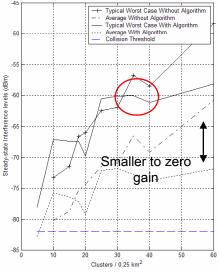

- Decisions impact one another
 - Etiquette
- Coordinate quiet periods
 - Common time base, scheduling
- Share information
 - Sensing
- Merging?


_vnci.

Hostile users can create problems from outside your network

What if the environment is "unstable"?

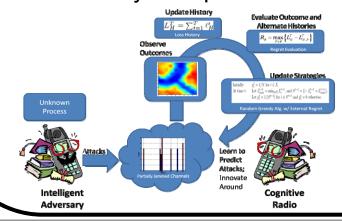
Stability impact

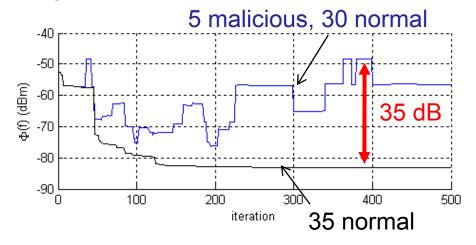

- Suppose another network is compromised in your area
- Their behavior influences your network's adaptations

Performance Impact

Fixed Interferer

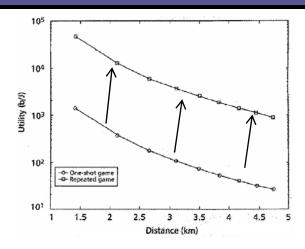
Adaptive Interferer (Mobile)

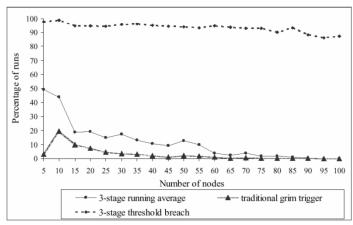

-- Typical Worst Case Without Algorithm
-- Average Without Algorithm


- Need to consider external actors
 - Detect unexpected behavior, adjust accordingly

Hostile users can blend in

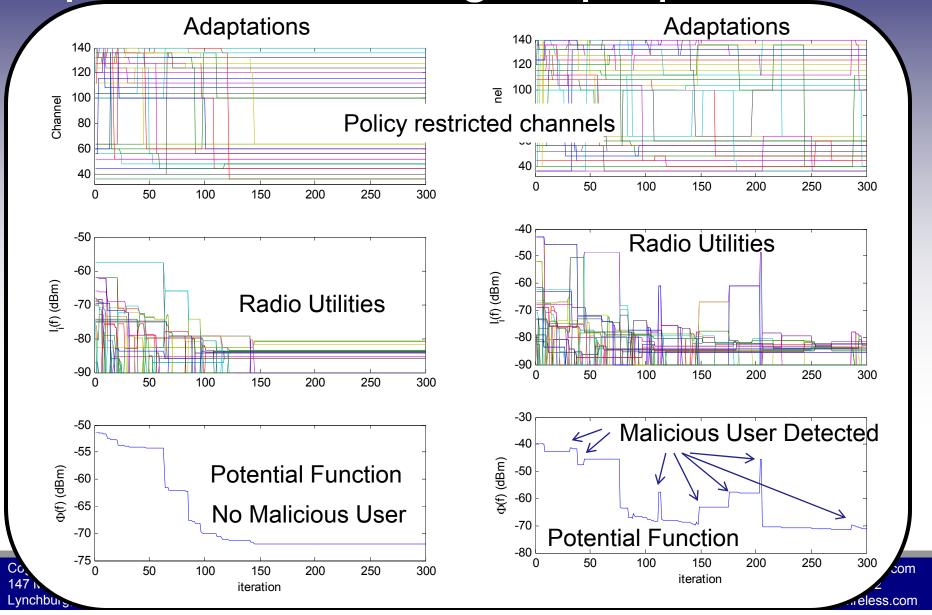
- Normal CR
 - Given available adaptations and knowledge about network state
 - Maximize system (own) performance
- Hostile CR
 - Given available adaptations and knowledge about network state
 - Minimize system performance


Average interference levels for nodes 6-35

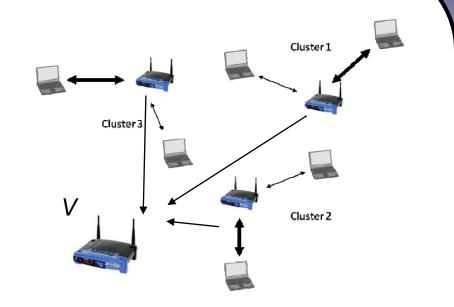

- Adapt at inopportune times
- Simply minimize performance
- Ensure marginally stable network goes unstable
- Plus learning exploits
 - And spoofing
 - And information corruption

Malicious != Selfish

- Popular "solution" to mischievous nodes (selfish nodes that damage network) is to "punish" nodes
 - Also implies a way to "brainwash" learning nodes
- Imperfect information can obfuscate punishment from mischievous behavior and produce catastrophic cascades
 - Brittleness
- Even with perfect information, malicious node may be masochistic



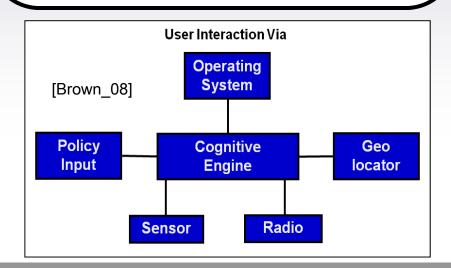
From Fig 6 in [MacKenzie_01]


From [Srivastava 06]

Detecting aberrant behavior from predictable emergent properties

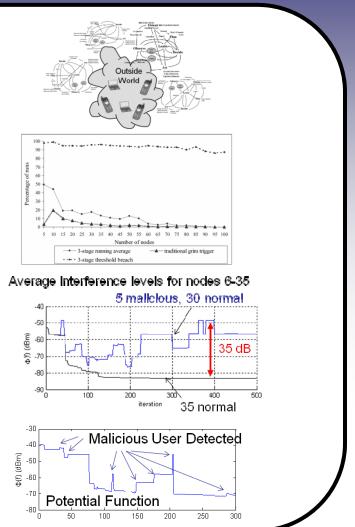
Implementation Discussion

- Implement as monitoring system that evaluates potential (emergent) function
 - Frequently sum of performance levels
 - Complexity is in the transmission / connectivity
 - No single node / cluster knows / can evaluate emergent function
- But a malicious CR will lie
 - E.g., Claim massive gains to offset others' losses
- With BSI, a malicious node can't tell a credible lie!
 - Other relationships exist
 - Need to be WPG / EPG for linear relationships


$$\frac{\partial u_{i}\left(\omega\right)}{\partial \omega_{i}} = \sum_{j \in N \setminus i} \frac{\partial u_{j}\left(\omega\right)}{\partial \omega_{i}} = \frac{\partial V\left(\omega\right)}{\partial \omega_{i}} / 2$$

Security Issues

- [Clancy_08]
 - Primary user emulation attacks
 - Belief manipulation attacks
 - A "cognitive radio virus"


Attacker	Bea- con	Geo+ DB	Detec Sens
injects policies that prevent CR communication on specific primary channels.			
injects policies that deny CR communication on all primary channels.			
injects policies that allow CR communication on specific primary channels.			
injects policies that induce CR communication on all primary channels.			
emulates primary user on all primary channels.			
emulates primary user on specific primary channels.			
masks primary user on specific occupied primary channels.			
blocks location information			
jams at spectrum handoff.			
blocks access to networked sensor information.			
blocks access to policies.			
induces receiver errors on specific licensed channel			
induces receiver errors on multiple licensed channels.			

- Spectrum sensing data falsification [Chen_08a]
- Quiet period jamming [Bian_08]
- Replay sensing attacks [Bian_08]
- False coexistence information [Bian_08]
- Honeypot attacks [Newman_09]
- Chaff point attacks [Newman_09]

Questions you should ask before fielding your network

- Can you predict what will happen when the network scales and interactions occur?
- How might your measures be turned against you?
 - Sensing, learning, policy enforcement
 - Even when following the "rules"
- How do you accommodate CR networks other than your own?
 - Can be attacked from outside without jamming
- If there are vulnerabilities, how will you detect that they are being exploited?

www.crtwireless.com

(540) 230-6012

Email: info@crtwireless.com