Using the identifying information of Section 15.711(e) to facilitate coexistence of incompatible whitespace protocols

James Neel

james.neel@crtwireless.com

Key Language from 08-260

- •15.711 (e)
 - -"Fixed TVBDs shall transmit identifying information. The identification signal must conform to a standard established by a recognized industry standards setting organization. The identification signal shall carry sufficient information to identify the device and its geographic coordinates."
- 15.713 (e1)
 - "Fixed and Mode II TVBDs must provide their location and required identifying information to the TV bands database in accordance with the provisions of paragraph (b) of this section."

Assumptions

- If a device broadcasts information according to yet to be specified 15.711
 (e) standard, it could also be recovered
- If a device can send information to the database, could also receive information

Quick Simulation Notes

- Channel choices don't correspond to a particular location
 - Hyatt has no white space!
 - 32 km of border
- Algorithms / math
 - Distributed greedy non-cooperative algorithm
 - See J. Neel, "Synthetic Symmetry for Cognitive Radio Networks," SDRF 07.
 - Don't think presentation takeaways are specific to algorithms
- Lots of simplifying assumptions in simulation model
 - Not looking at physical implementation details
 - Intended value is emphasis on information value

Screen caps from ShowMyWhiteSpace.com

Sharing among similar networks

- Assume it doesn't matter which class of devices operate in the same band
 - 4 classes of devices
 - 7 channels
 - 30 devices
- ID sufficient to equally distribute channels in close range

Dissimilar Networks

- Not all networks coexist well
 - Polite with aggressive spectrum use
- Assume IDs are sufficient to identify device class

$$A = \begin{bmatrix} 1 & \varepsilon & \varepsilon & \varepsilon \\ \varepsilon & 1 & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & 1 & \varepsilon \\ \varepsilon & \varepsilon & \varepsilon & 1 \end{bmatrix}$$

$$\varepsilon = 0.01$$

- Intuition indifferent to being in band with 100 of same type or 1 of different type
- Easily self-segregate
 - Not necessarily equitable
 - Assuming protocol-specific coexistence protocol for timeslot management

Mix of similar and dissimilar networks

- Assume some dissimilar networks coexist well
 - e.g., a common 802coexistencestandard

$$A = \begin{bmatrix} 1 & 1 & \varepsilon & \varepsilon \\ 1 & 1 & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & 1 & \varepsilon \\ \varepsilon & \varepsilon & \varepsilon & 1 \end{bmatrix}$$
$$\varepsilon = 0.01$$

Location helps reduce interference

Use location information to ensure frequency reuse

- Minimize cochannel interference
- Could be explicit
 - Location ID
- Could be inferred / done implicitly
 - Received power and known
 - Generally less accurate than providing location

Separating by class reduces capacity

- Trunking gains matter
- Put up with the bad "neighbor" as much as possible
- Need to study tradeoffs when defining coexistence standard

Prioritized Access for Tethered Devices

- Mode I devices tether to Mode II or Fixed devices
 - Implies close proximity
- Could influence coexistence process by also broadcasting / sharing # of tethered devices
 - Not currently required
 - Weight distance metrics by # of tethered devices
- Tethered devices factored in without revealing precise locations
- Could also consider traffic loading
 - Perhaps not as amenable due to greater variability
- Tethered device performance likely suffers by not explicitly considering location

Presentation Take Aways (1/2)

- Identification critical to avoiding "catastrophic" channel sharing
- Location information gives significant gains to system capacity
 - Depends on accuracy, currently within ~50m
- Leverage "free" information where it's available
 - ID and location currently only regularly provided via 15.711(e) for interferer identification
 - Not for Mode II devices though
 - Likely need to add broadcast requirement
 - Shared database with location / id access (which happens for could also work if extended
 - More frequent access / updates, possible info from tethered devices
 - Could be pushed instead of pulled if changes are infrequent

Presentation Take Aways (2/2)

- Assumed two step-coexistence process
 - Distributed sort of fractious networks into different channels (frequency deconfliction)
 - Can sort themselves out without direct coordination
 - Coordinated coexistence of compatible networks within channels (transmission time deconfliction)
- Limit frequency deconfliction to when it's absolutely necessary
 - Limits trunking gains
- Can account for tethered radios without revealing locations
 - Weighted fairness needs mechanism for broadcasting weights if weights are situationally dependent