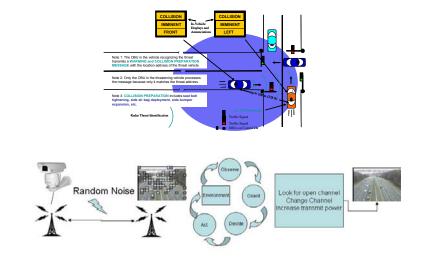

An Overview of Cognitive Radio and Intelligent Transportation Systems

James Neel james.neel@crtwireless.com

Ashwin Amanna AAmanna@vtti.vt.edu



Presentation Overview

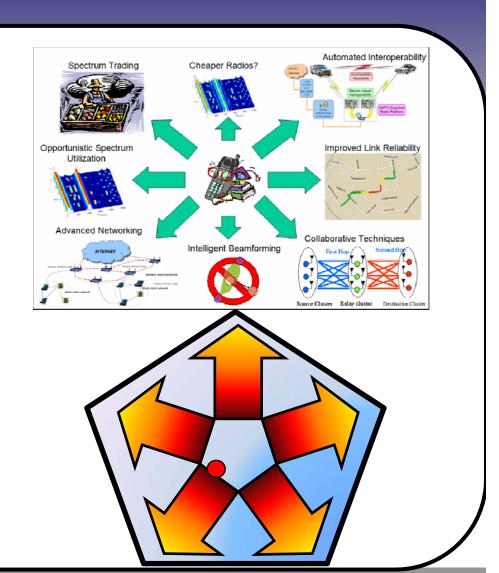
- Cognitive Radio
 - Applications,
 Activities, and
 relationship to SDRF

	1900.1	1900.2	1900.3	1900.4	1900.5	1900.6
PAR Approved	3/04/05	03/20/05	12/05/07	12/06/06	03/28/08	9/26/08
Initial Ballot - Open	9/07/07	07/02/07	Pending Withdrawal	9/08/08		
Initial Ballot – Close	10/07/07	08/03/07		10/08/08		
1st Recirc - Close	4/17/08	10/24/07		10/26/08		
2nd Recirc - Close		01/01/08		11/22/08		
RevCom Approval	4/10/08	1/08/08		1/19/09		
SASB Approval	6/12/08	3/28/08		1/29/09		
Published	9/26/08	7/29/08		2/27/09		

- Intelligent
 Transportations
 Systems and
 Cognitive Radio
 - Needs and potential uses for cognitive radio in ITS

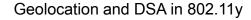
What is Cognitive Radio?

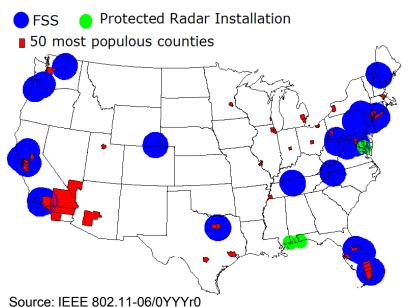
- "An approach to wireless engineering wherein the radio, radio network, or wireless system is endowed with the capacities to:
 - acquire, classify, and organize information (aware)
 - retain information (aware)
 - apply logic and analysis to information (reason)
 - make and implement choices (agency) about operational aspects of the radio,
 - network, or wireless system in a manner consistent with a purposeful goal (intelligent)."1



- 1. A design paradigm AND a device / network
- 2. Formalization of a pre-existing trend
- 3. One emerging example of domain-specific Al.

^{1.} Cognitive Radio Definitions and Nomenclature," SDRF-06-R-0009-V0.08


Why Cognitive Radio?


- CR paradigm enables many applications
 - Too tedious to do manually
 - Things requiring a fast response
- CR allows design decisions to be made in the field
 - -Simultaneously solve fewer corner cases
 - Adapt to the use case at hand, rather than solve all use cases simultaneously

Dynamic Spectrum Access (DSA)

- DSA enables run-time flexible access to spectrum
 - Spectrum allocated to service
 A, but can be used by service
 B when A is not using it
- Rules for access defined via policy (implicit or explicit)
- Focus is on primarysecondary coexistence
- Common technologies
 - Spectrum sensing
 - Geolocation / database
 - Policy reasoning
 - Dynamic Frequency Selection
 - Transmit Power Control

Commercial examples

- 802.22
- 802.16h
- 802.11h
- 802.11y,
- White Space Devices

Cognitive Radio standardization activities

- White Space Database Group
 - Addressing FCC requirements
- CogNeA
 - Publishing through ECMA (TG-48 TG1)
- 802 Executive Committee Study Group on White Spaces
 - Assess the impact of the FCC
 White Space R&O on IEEE 802
 activities and form initial plans
- Next Generation Mobile Networks
 - http://www.ngmn.org/

SCC41

	1900.1	1900.2	1900.3	1900.4	1900.5	1900.6
PAR Approved	3/04/05	03/20/05	12/05/07	12/06/06	03/28/08	9/26/08
Initial Ballot - Open	9/07/07	07/02/07	Pending Withdrawal	9/08/08		
Initial Ballot – Close	10/07/07	08/03/07		10/08/08		
1st Recirc – Close	4/17/08	10/24/07		10/26/08		
2nd Recirc - Close		01/01/08		11/22/08		
RevCom Approval	4/10/08	1/08/08		1/19/09		
SASB Approval	6/12/08	3/28/08		1/29/09		
Published	9/26/08	7/29/08		2/27/09		

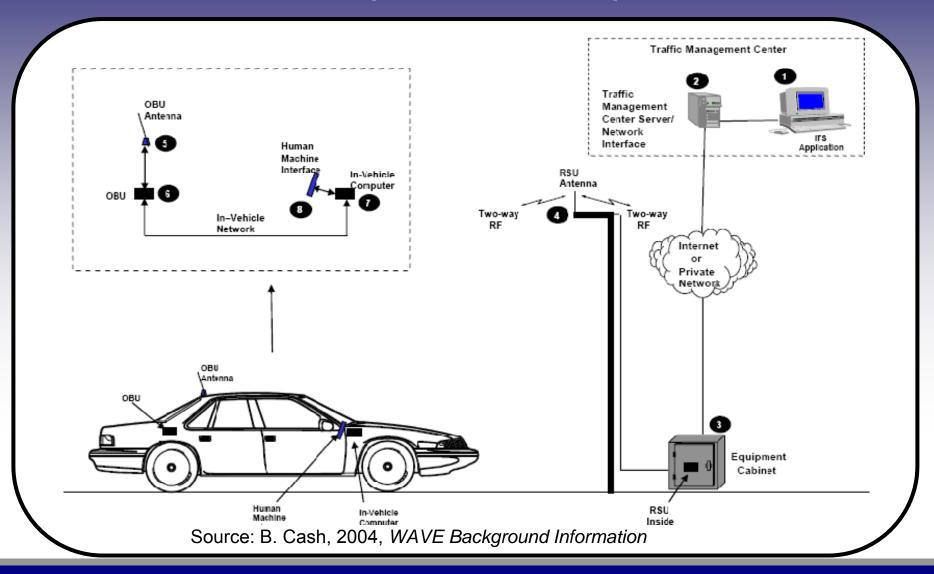
- 802
 - 802.11h, y
 - 802.16h
 - 802.19
 - -802.22
- E3
- LTE-Advanced, 802.16m

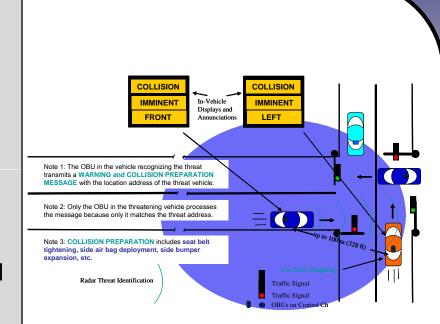
SDR is a natural platform for CR

- Corner cases still drive hardware costs / performance
- Simply easier to implement CR processes in software

- CRWG
 - -Definitions
 - -Uses & explanation for ITU
 - -Quantified results
 - -Dynamic databases

- Modeling Languages for Mobility
 - Ontology for interactions and policy
- Test & Measurement
 - How to test CR functions?
- Public Safety SIG
 - Identify relevant uses
 - Study applicability of WNAN
- Satellite SIG
 - Deconflict satellite and WiMAX
- Liasions with 802, E3, ITU
- Timely workshops



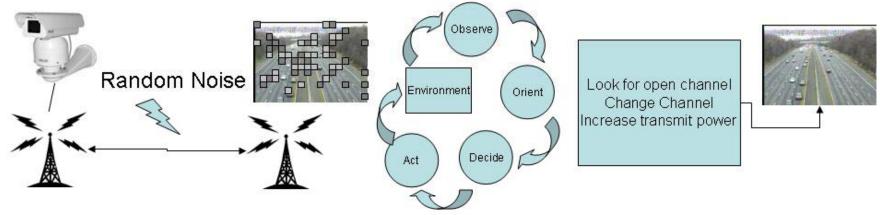

- DSRC designed to adapt 802.11a to vehicle environment
- 5.850-5.925Ghz
- Modified 802.11a MAC
- Low latency, Speeds up to 120mph
- Prioritization scheme
- Seven 10MHz channels, 1 control channel, 6 data channels

IntelliDrive (V2V, V2I)

Numerous Applications

- Emergency warning system for vehicles
- Cooperative Adaptive Cruise Control
- Cooperative Forward Collision Warning
- · Intersection collision avoidance
- Approaching emergency vehicle warning (Blue Waves)
- Vehicle safety inspection
- Transit or emergency vehicle signal priority
- Electronic parking payments
- Commercial vehicle clearance and safety inspections
- In-vehicle signing
- Rollover warning
- Probe data collection
- Highway-rail intersection warning

From: IEEE 802.11- 04/ 0121r0


Available:

http://www.npstc.org/meetings/Cash%20WAVE%2 OInformation%20for%205.9%20GHz%20061404.p df

CR Applications

Adapt to changing spectrum conditions

- Optimize limited medium amongst greedy agents
- Allow CR to tune communications design to changing "mission" of transportation network

CR Applications

- Optimize handoffs between roadside units
- Can DSA enable both commercial and safety application on the same spectrum?
- Can CR enable Self Organizing Network deployment
 - Self initialization, self management, adaptation
 - Save on deployment and management costs
- Can an SDR platform break the typical procurement cycle?
 - 'Future-proof' devices that can adapt

Presentation Take-Aways

- Cognitive radio is emerging as an critical technology to wireless networks
 - Most focus on spectrum access / management
 - Also allows network design to be tuned to changing uses
- ITS / 802.11p has numerous challenges
 - Cognitive radio can solve some of these
 - Spectrum access, optimizing for different apps.
 - Others may remain elusive for the moment
 - Business model