Commercializing Wireless IP

(Or... things I wish had been covered in class)

James Neel, PhD
Cognitive Radio Technologies, LLC
June 5, 2008
4th Wireless @ VT Wireless Summer School

So you've got some IP, now what?

- IP lets its owner create a monopoly
- Value depends on
 - Size of market
 - Substitutable products
 - Ability to capture market
- No money unless without a business as IP does not sell itself
 - If it's revolutionary, then it's by definition new and unknown
 - Which means it's virtually impossible for outsiders to properly evaluate
 - Need some means to demonstrate value

- To start a business, you have to identify
 - Product / service
 - Market
 - Frequently a market that does not exist yet
 - Potential customers
 - Funding to move IP from a concept to a product
 - The right team (many may be external to the company)
- All highly inter-related and tied into the specific IP

Typical Wireless Startup Products

- End Product
 - Equipment Vanu, Cognio, Garmin
 - Stand-alone service Spectrum Bridge
- Intermediate products
 - Chip sets Airgo
 - Software Skyhook
- Direct licensing
 - InterDigital, Qualcomm
- Value captured generally inversely related to distance from user who "cares" about the technology
- Generally a mix of products types are used and evolve over time

- 1) Largest potential revenues
- 2) Largest startup costs
- 3) Works best when a proprietary solution is feasible
- 4) Useful when creating new market or selling into existing market
- 5) Need most sophisticated team
- 6) Partnerships less important
- 1) In between for most things
- 2) Need to sell into existing market
 - 1) Generally lowest costs, great variance in profits
- 2) Need to sell into existing market
- 3) Partnerships critical
- 4) Extremely difficult with revolutionary technology
- 5) Team skewed to engineering + legal

- VC tends to acquire promising firms, not build them from scratch
 - Does happen with the right team
 - · Generally successful entrepreneurs
- Funding sources generally focused on basic and applied R&D
- Valley of Death leads to creative cash flow solutions
 - Engineering services / consulting
- · Partnerships help to smooth transitions
 - Customers as investors (InterDigital, Flarion)
- · Infrastructure is just as important as cash
 - Not just development equipment, but personnel, customers, key technologies

Typical Paths for IP to Enter the Wireless Market

- Go-it-alone
 - Easiest for products that appeal to the masses
 - Garmin
 - Harder for smaller markets (in terms of # of decision makers)
 - Vanu
- Standards
 - Find a way to get your technology into a standard and extract royalties
 - Hard for a new player with a new tech to break in (IS-136 & Qualcomm)
 - Partners help (InterDigital & Nokia)
 - Sometime possible to sneak in without submarining (CSIRO)

Typical Paths for IP to Enter the Wireless Market (Partnerships)

- Sponsored Development
 - Corporate funds integration / development
 - May serve as customer or as a technology champion
 - Ex: InterDigital for Nokia (WCDMA TDD)
- Spin-Out
 - Company spins out technology outside of core-compentency or for which it lacks adequate attention
 - Most famously the Fairchild 8: Bell -> Shockley -> Fairchild -> Intel
 - Parent company frequently a customer and may help line up contracts when an investor
- Spin-In
 - Parent serves as investor, customer, provides key infrastructure, and then may completely buy out the startup
 - Ex: Nuova-Cisco (Gigabit ethernet switching)
 - http://www.cio-today.com/story.xhtml?story_id=0220025VSP2M
 - Advantage to parent: easy integration, shared risk/capital for development

Case Study: Qualcomm

CDMA

Qualcomm really began with Linkabit

- Linkabit founded as academic startup in 1968 by Irwin Jacobs, Andrew Viterbi, and Leonard Kleinrock (left/fired in 1969 when he got more involved with ARPANet)
 - Really intended to pool consulting
- Little to no patents filed (pre-GSM)
 - Actually advised to not file patents on Viterbi decoder
- Products / services
 - Lots of defense consulting
 - Chips for Viterbi decoder
 - VSAT digital PSK spread spectrum system
 - Coding schemes for NASA / JPL (Viterbi connection)
 - Security for military comm
 - First D-AMPS handset
 - Videocipher (HBO scrambling)
 - Spread spectrum modems for the Air Force
- Bought by M/A COM
 - Which fell apart later and lots of Linkabit employees left
 - Including Qualcomm Jacobs, Viterbi + 5 Linkabit employees

Qualcomm Pre-CDMA

- Formed in 1985
 - Initially went after military and satellite contracts
- Key early contract was OmniNet (product became OmniTRACs)
 - Low cost spread spectrum satellite comm for communication with trucks
 - Still a major Qualcomm product
 - OmniNet went under in 1988 and Qualcomm had to buy them out
- Key insight:
 - They were doing mobile spread spectrum communications, just had to figure out how to make it work in a cellular environment

Qualcomm CDMA Plan

- Key IP –Solving problems associated with cellular spread spectrum
 - Power control, handoffs, adaptive vocoder
- Product:
 - Equipment for cellular spread spectrum
 - Expand into licensing
- Initial status: theory, history of similar products
- Financing: Mix of traditional investors and telecom companies
- Strong team
 - Previous business successes, leading researchers
 - Timing right (move to digital was clear)

Execution

- Early Financing:
 - 1989: Funding from Pacific Telenesis, NYNEX, Ameritech for initial CDMA Trial (on NYNEX system)
 - Augmented out to \$30 million
 - 1991 IPO for \$53 million
- Open standard to increase revenues (licensing IP)
 - 1989 tried to get into IS-54, but went TDMA
 - 1992 IS-95 started
 - 1993 IS-95 completed with only minor changes to Qualcomm implementation
 - Later became basis of 3G standards

- · Market Penetration
 - Early licensing/development agreements with Nokia, Motorola, Nortel
 - AT&T & NYNEX early deployers
 - Created CDMA partnerships to foster deployment in other markets
 - Roll out delayed for PCS allocation and a few patent disputes
 - 1994 Joint venture with Sony to manufacture/market phones
 - 1995 (by then a sure thing):
 - 11 of 14 carriers in US
 - 12 phone suppliers licensed, 6 BTS manufacturers
 - · Another \$500 million public offering
- Later
 - 1999 sold off infrastructure manufacturing to Ericsson
 - Investments in foreign service providers who would deploy CDMA networks

Qualcomm Now

- Variety of products
 - CDMA / OFDMA / Flash OFDM
 - BREW
 - Media-FLO
 - Omni-TRACS (never licensed, but smaller market)
 - Q-chat (Push-to-talk for Sprint)
- 2007 Stats
 - \$8.87 billion revenue up 18% over 2006
 - 145+ licensees for CDMA

http://files.shareholder.com/downloads/QCOM/315627873x0x 189123/2f1a890f-ef39-43f6-bfd3d673c59c16c3/QCOM_stockholder_031108_FINAL.pdf

Qualcomm CDMA Summary

- Flexible Business model:
 - Research to manufacturing
 - Transitioned to an Research to IP licensing company
 - Diversified (but related) technologies (cept for Eudora)
 - Tried several models before finding ones that worked
- Key IP: Technical hurdles to cellular spread spectrum
 - Power control, adaptive vocoders, handoffs
- Market Entry
 - Potential Customers as investors
 - Built end-product
 - Used standard and licensing to expand market
- Financing
 - Initial internal development
 - Proof-of-concept from investors
 - Deployment from IPO
 - Cash flow from OmniTracs and other projects
- IP was critical to revenues and success, but created political problems later
- Bottom line: Having the right team, a flexible business model, and strong IP can help you adapt to the changing competitive environment

Case Study: Flarion

Flash-OFDM

Flarion Overview

- Key Technologies: Flash-OFDM ("Radio-Router")
 - Fast-hopping subcarriers to make OFDM behave like a spread spectrum system
 - All packet-based, all IP backbone cellular network
 - Relatively narrowband (1.25 MHz)
 - In theory, cheaper high speed data
- Founding Team:
 - Initially developed in Digital Communications Research Department of Lucent Wireless Research Center
 - Led by Dr. Rajiv Laroia (here today!)
 - Department spun out in 2000 from Lucent New Ventures Group with Dr. Laroia as CTO and founder
- · Quick analysis:
 - Strong team, strong industry ties
 - Filling huge emerging niche
 - Well protected IP
 - Need for large amount of capital
 - Not the best immediate market (cellular equipment manufacturers were taking a bath at the time), but could change over time

Flarion Business Model

- Goal: Cellular equipment vendor with proprietary standard
- Market entry
 - Leverage various contacts to get initial field trials with service providers
 - · Demonstrate superiority of solution
 - · Target smaller markets initially
 - Position technology as key player in open standard (802.20)
 - Form industry alliance to promote technology Encourage investment by potential customers (e.g., T-Mobile, SK Telecom)
- IP Protection Patenting + Licensing from Lucent
- Financing Lots of VC from the start
 - \$12.5 million 1st round Feb 2000 Bessemer, Pequot, Lucent, Charles River

Flarion: Excellent Execution

- Numerous deployments
 - Seoul 2003 Seoul (SK Telecom)
 - Washington D.C. Sept 2004 (Motorola)
 - Blacksburg 2005 (Citizens' Wireless)
 - Raleigh-Durham 2004 (Nextel)
 - July 2005 Japan (Japan Telecom)
 - Slovakia 2005 (T-Mobile)
- 2004 Launched 802.20 for an open standard
 - Flarion leading technology
 - Qualcomm leading vote holder
- Created "Flarion Alliance Program" to facilitate industry partnerships

Flarion's Model sorta Failed

- Convergence of problems
 - Sprint-Nextel merger knocked out its first big customer
 - Sprint didn't want to maintain two networks
 - Then went with WiMAX
 - Mobile WiMAX gave the appearance of coming up faster than expected
 - Why use a proprietary standard (a la Qualcomm IS-95) when an open standard is available
 - Effort to insert technology into open standard (802.20) got waylaid
 - Qualcomm / Intel fight slowed it down considerably
 - First time an 802 group got suspended (actually after Flarion was no longer independent)
 - Probably could have continued, but revenues were going to flatten
- Bought out by Qualcomm in 2005 for \$600 million to \$1.5 billion
 - Helped to preserve usefulness of Qualcomm's CDMA patents as Cellular transitions to OFDM

Flarion Summary

- New proprietary cellular technology with the promise of revolutionizing cellular industry
- Approximately the Qualcomm model
 - Significant early financing
 - Strong team
 - Significant # trials, small deployments
 - Emphasis on crafting alliances
 - Went for open standard
- Bottom Line:
 - You can do everything right, and still have not achieve your business objectives because of external actors
 - However, having a strong IP portfolio can still give you a nice exit

Case Study: Cognitive Radio Technologies, LLC

Distributed Cognitive Radio

CRT Overview

- Key Technology:
 - Low complexity, stable distributed network optimization
 - Big capacity gains, simpler deployment
 - Lower cost cognitive radio
 - Most useful in mobile ad-hoc settings
- Founding Team
 - (2007) James Neel & Jeff Reed
- Quick analysis
 - Leading academics in cognitive radio but little business experience
 - Important niche, market size to be determined
 - IP not well suited for end-product, but could be applied to virtually every wireless network

CRT Business Model

- Goal: Research to integration
- · Market entry
 - Partner with established players on research proposals to "spin-in" IP
 - Targeting military and vehicular networks
- Financing
 - SBIRs, consulting
 - Extensive partnering on government research proposals
- Bottom line:
 - Not going to be a Qualcomm or even a Flarion, but could be a Linkabit

Presentation Summary

- IP does not commercialize itself
 - Need a business
- Many routes to commercialization
- Appropriate business model function of many factors
 - IP, team, market, products, funding, customers
- Unless you're selling to consumers, it helps tremendously to partner with your customers
- Flexibility helps commercialization
 - First path / product / market will likely not be the winning combination
 - Necessary to evolve business as technology matures
- IP
 - Often the only thing of value in a startup
 - Has to be demonstrated to show value
 - Keeps company viable after value demonstrated
 - Smooths transitions