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Abstract— The selection and design of performance metrics
and utility functions is an important, but inadequately addressed
issue in the design of cognitive radio networks. Unlike tradional
radios, a cognitive radio may change its objectives as radio
scenarios vary. Because of the dynamic pairing of objectigeand
contexts, it is imperative for cognitive radio network desgners
to have a firm understanding of the inter-relationships between
goals, performance metrics, utility functions, link/network per-
formance, and operating environments. In this paper, we firs
overview the hierarchical metrics for evaluating the perfamance
of cognitive radios from the node, network, and application
levels. From a game-theoretic viewpoint, we then show thathe
performance evaluation of cognitive radio networks exhibis the
interdependent nature of actions, goals, decisions, obsations,
and context. We discuss the inter-relationships between e
rics, utility functions, cognitive engine algorithms and ahieved
performance. Various testing scenarios need to be employet
comprehensively evaluate the cognitive functionality of agnitive
radios. We propose the radio environment map-based scenari
driven testing (REM-SDT) for thorough performance evaluation
of cognitive radios. An IEEE 802.22 WRAN cognitive engine
testbed is presented to provide further insights into thisimportant
problem area.

Index Terms— Cognitive radio, cognitive wireless network,
game theory, performance evaluation, performance metricytility
function.

I. INTRODUCTION

Formalizing a decades-long trend towards radios which sd

narrow sense, comprehensive situation-awareness ardlit inte
gent learning capability, which have not been realized 8y fu
exploited by current radios, are two defining features afirfeit
advanced CRs.

The CR paradigm will drive the next generation of radio
devices and wireless standards to enable a variety of neliv app
cations in demanding environments, such as spectrumsghari
networks, natural disasters, civil emergencies, and amjlit
operations. Examples of CR-oriented networks include the f
lowing: the U.S. DARPA XG [41] and WNaN programs [69],
IEEE 802.22 WRAN [24] (aiming to support data services
in the TV bands as secondary users), IEEE 802.16h (aiming
to improve coexistence mechanisms for license-exempeper
tion), IEEE 802.11h (supporting dynamic frequency setercti
and transmit power control for WLANS to share spectrum),
802.11y (enabling Wi-Fi like equipment to operate on a
secondary basis in licensed frequency bands), European end
to-end reconfigurability (BR) research program [20], and the
networks proposed by the White Spaces Coalition [2].

A. Building Blocks of CR

The building blocks and overall system flow of the CR
model considered in this paper is illustrated in Fig. 1 [88].
this model, the radio environment map (REM) is an integrated
fpformation structure (i.e., a database) that consists wfim

optimize in response to changing conditions, cognitivéaraddomain information for CR (or, metrics), such as geographi-

(CR) and cognitive wireless networks define a design panadi
for introducing numerous new adaptive algorithms, whicf

&al features, available services, spectral regulatiatstions

nd activities of radio devices, policies of user and servic

enable much higher spectrum utilization, provide more- relproviders, and past experience [80], [83]. During opergtio

able and personal radio services, reduce harmful interfere
and facilitate the interoperability or convergence of eliént

wireless communication networks. The term “cognitive oadi

was initially coined by Dr. Joseph Mitola Ill in late 1990<[4

the CR observes the operational environment via sensor(s),

and obtains necessary situation awareness about the tturren

radio scenario by leveraging the sensing results and REM.
The “brain” or intelligent agent of CR, the cognitive engine

[43]. In a broad sense, some preliminary CR technologigs, (e (CE). then determines an appropriate utility function biase
adaptations in transmit power and dynamic channel sefecti®'® Policy and the goals, by considering the specific apjiina

in response to varying RF environments) have already beRpradio scenario. The utility function maps the currenteste
employed in many existing wireless networks [66] such &f the CR, usuelly_ represented by an array of ehosen metrics,
cellular networks, cordless phone systems, and WLANS. Int@ @ value for indicating how close the state is towards the
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desired (or optimal) CR state. The most pertinent perfogaan

metric(s) should be taken into account and incorporateal int
a proper utility function to meet the CR’s goal for the specifi

radio scenario or application.

By leveraging past experience and knowledge, the CE can
choose the most efficient reasoning and learning method and
make (near-)optimal (cross-layer) adaptations subjecioto
straints of regulation, policy, and radio equipment calistbi
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TABLE |
DIFFERENTASSUMPTIONS ABOUTWHAT CAPABILITIES ARE NECESSARY
FORRADIO TOBE CALLED A COGNITIVE RADIO

o

network deployment and maintenance as well as spectrum
trading/subleasing. Without well-defined performanceriogt

= = o and benchmarking methods, it would be almost impossible to
= E g ‘© g = é & | put CR technologies into practice.
§, % g : ;(g é § ~§ % . Since a CR may support many disparate applications, there
S L, U 5 T = 2 £ 8§ E |isabroad range of performance metrics that could be defined
2 3 L £ 9 E ¢ wm a0 = .
S g8 . 22 2 £ £ | and has been used to evaluate CR performance. While a
g 2 § 2 & § S T & £ s | great number of choices are available, care must be taken
Dei § § § § § UEJ § g § §’ 2 in selecting performance metrics as the selection will ioipa
e - many aspects of CR design. To be flexible to changing radio
Eggki[nl:[’gl] 5 5 5 é NARVARVARY, scenarios, the CE may adopt dynamic situation-awareyutilit
\EEE v v v v functions rather relying on a single predefined static fiomGt
P1900 [25] and to trade-off various (possibly conflicting) objectives
IEEE v VvV VY v The dynamic interplay of changing environments, goals, and
ﬁiﬁﬁg]sa] VARV ARSY Sy v capabilities (due to learning) means that creating a generi
Vo @3 | v v v Vv v V7 ber}chmarkmg fmetci;ll(;d for CE is non-trl\{[l_al. Flrst_,t Ismce theOI
NTALOl |V v v v v v performance of a CR may change over time as it learns an
SDRF v v v v v Vv V adapts to th.e gnw.ronme_nt, measurements taken a!t one time
CRWG [62] may not be indicative of its performance at a later time. Sec-
\(gawe [70] vV Vv VYV VY ond, since most CR designs assume cross-layer adaptations,

traditional layered testing under static conditions wilelg
misleading results. Third, since a CR network is generally
guided by numerous competing objectives, benchmarking a
Performance feedback is collected from other radio nodes©R will tend to be a subjective process as users running
by sensing the environment, which enables the closure different applications in their perspective environmewit

the CE learning loop. The case library, knowledge base aassign different weights to metrics. This is not a problem
REM are updated according to the observed performanegsque to CR, but it does highlight the challenge in objextiv
results [82], [84]. evaluation of a CR system.

B. Motivation C. Scope and Organization

Although the notation of CR has been introduced in late In this paper, we demonstrate CR design trade-offs by
1990s, the wireless community has not converged on a coexamining the interaction among performance metricsityitil
mon definition at this time. In fact, different people andunctions, and decision-making processes. We focus on the
organizations have different expectations of what level glerformance metrics appropriate for dynamic spectrumsacce
intelligence and what capabilities are essential to or tpereand sharing, which have attracted considerable resediantisef
beneficial to the CR concept, as illustrated in Table I. Ré the past few years and have significant and immediate
searchers and standardization bodies generally agre€Batimpact to commercial, military, and public safety radio$, [8
should be able to sense the environment and autonomoyadl, [19], [35]. Specifically, this paper reviews candiel@R
adapt to changing operating conditions, but mainly differ iperformance metrics at the node, network, and application
the levels of situation awareness and cognitive functipnal levels, examines how CR performance can be tuned in the
Such diverse expectations make performance evaluatiordesired direction by defining and adopting proper metrias an
great challenge in the design of CR devices and networks.utility functions, and investigates how to efficiently evale

For CR researchers, establishing or selecting effective per validate CR performance under various testing scenarios
formance metrics (called “meters” in [61]) is usually one o¥Ve believe that addressing these important issues would be
the most important and challenging steps towards a suctessf great interest not only to CR designers and standardizati
CE design. Formalizing CR benchmarking methods and péedies, but also to existing/emerging network operatox an
formance metrics would help hasten the integration of the Gipectrum regulators. Formalizing performance metrics and
paradigm into existing wireless networks. First, benctiimay evaluation methodologies will also greatly help the resear
the performance of CRs when coexisting with incumbent rada@mmmunity to make meaningful comparisons between differ-
devices and systems is badly needed by (spectrum) regulatmt CE algorithms and to further accelerate the advancement
to provide a basis for certifying and regulating CR. Requiat of CR research.
need an effective and efficient way to demonstrate that CRThe rest of this paper is organized as follows. In Section II,
devices or systems will not generate harmful interferemce we first define the hierarchical structure and then provide an
incumbent users. Similarly, CR performance benchmarkingerview of performance metrics from various perspectives
is also needed by vendors for type approval testing durifitne inter-relationship between performance metrics,itytil
the development and production of CRs. Finally, CR perfofunctions, and the achievable CR performance is examined
mance benchmarking is needed by service providers for @®m a game-theoretic view in Section Ill. In Section 1V,
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Fig. 1. Building blocks of the CR model considered in this grapnd the role of performance feedback and utility functionCE.

we present an IEEE 802.22 WRAN Base Station (BS) C&an include information (awareness) about the following:
Testbed, which provides first-hand experiences and insighdcation, geographical environment, RF environment, titgbi
into the methodology of CR networks evaluation. Concludingnd trajectory, power supply and energy efficiency, reguiat
remarks, remaining issues, and suggested directions fiarefu and policy, mission, priority, and context awareness [80].
CR research are provided in Section V. Each type of information has an associated set of metrics
for evaluating the quality or extent of the information. For
example, location accuracy, availability (in time and spac
In this section, we review performance metrics that can ti)%tegrity, and continuity are metrics for evaluating thedton
a\iareness of a CR node.

used for CR performance evaluation at the node, network, an q . ¢ q t hari i
application levels. Regulators, standard organizatioadio . or dynamic Spectrum access and spectrum sharing applica-
ions, the most critical piece of information for secondasgrs

equipment vendors, CR network operators/users, and leg )(J < th f PUS. T | ; i
radio network operators/users may have different concems S) Is the presence ,O -'S. WO complementary metrics are
used to evaluate a CR’s ability to gain meaningful informiati

about CR performance. Therefore, different metrics arelege . :
for these perspectives. In Table Il and Table Ill, we provio%bOUt the presence of a PU—probability of detectifipXand

extensive lists of candidate performance metrics for CRenoHrOb.ablllty of false a'a”."” Kr ). In gen(_eral, a h'ghe!PD
drowdes greater protection to PUs but is accompanied by a

and CR network, which we nickname “node score card” arﬁ . T
“network score card,” respectively. Each of these metras ¢ igher Pr4 which tends to lead to less efficient spectrum
’ gilization. The receiver operation characteristics (R@€Ca

II. AN OVERVIEW OF CR PERFORMANCEMETRICS

be used in the CE to drive the operation of a CR. The mo : )
general case will be discussed in Section Il where utilit _dep|ct_ the PU dgtechon rate vs. the false allarm rate under
functions are used to unify multiple metrics. various signal-to-noise ratios (SNR). Depending on whose
interest is of priority, either a targetellp or Pr4 should
be set. It is possible to improvBp without sacrificingPr 4
A. Node-Level Metrics by employing cooperative sensing [18], [39], [53].

Generally speaking, a CR node can be evaluated from theA CR node may also be aware of the performance of
following four domains: (i) cognitive functionality, (iipverall radio devices (both other devices and itself). This inctude
node performance, (iii) complexity, and (iv) technical ovity.  information such as the linearity of radio transceiver,rgpis
Each domain may consist of a set of sub-domains or key méee dynamic range (SFDR) of the front end, power and
rics, as shown in Table Il. For example, cognitive functidga frequency of intermodulation products, noise power, bbatte
may include sub-domains of situation awareness, adaptatibfe and power consumption, cycles and memory required to
reasoning, learning, and planning. Among these metrieegsoimplement a particular waveform.
performance metrics are specifically defined for CR, such as2) Metrics for Accessing Cognitive Functionalityfhere
channel evacuation time and probability of primary user)(Plare different ways to evaluate the cognitive functionatifya
detection, as opposed to generic performance metrics éivat hCR, such as reasoning, decision making, planning, and-learn
been widely used in the literature. We focus on such Chig [63]. “Radio 1Q” can be defined to different metaphorical
specific metrics in the following. levels of cognitive capability. For example, an infant CRyma

1) Metrics for Situation AwarenessThe performance of have limited aware capability, a toddler limited adaptatio
a CR network is highly dependent on the extent and qualitapability, a preschool limited learning capability, anoad
of information about the radio environment available atheadescent may avoid making repeated mistakes, while an adult
node. This environmental information (situation awarshesbehaves autonomously to reach his/her goals even without
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TABLE Il
EXAMPLE NODE-LEVEL PERFORMANCEMETRICS(OR "N ODE SCORECARD"”) FOR SPECTRUM-SHARING NETWORKS

Domain Performance Metrics |

Location accuracy, availability, integrity, and contityuat various (outdoor/indoor) environment [11]
RF environment awareness:
- Receiver Operation Characteristics (ROC): PU detectaia vs. false alarm rate under various SNR
and certain time bandwidth product [53], [77]
Situation - Required SNR for PU detection at certain detection ratefalsé alarm rate [18]
Awareness - (Total) spectrum sensing time for PU detection for a givensgtivity [72]
- Signal classification/recognition functionality [14]
- Spectrum opportunity tracking and prediction [78]
- Radio channel condition (such as multi-path delay sprewtiZoppler spread) awareness [57]
Mobility and trajectory awareness [80]
Power supply and energy efficiency awareness [80]
Regulation, mission, context, policy, and priority awaes [62], [63], [80]
Channel evacuation time when PU (re)appears [41]
Cross-layer adaptability
Operation channels/bands and switch time between opeshtahannels or bands [41]
Cognitive | Adaptation | Antenna pattern adaptability [23]
Functions | Capability | Dynamic range at receiver and transmitter
Waveform/air interface flexibility and reconfigurability
Routing protocols adaptability
Overall radio 1Q level: “infant,” “toddler,” “preschool,*child,” “adolescent,” “teenager,” “young adult” [63
Reasoning capability [83]

Reasoning, - Case/knowledge/policy-based reasoning capability
Decision - Case retrieval time

Making Decision making capability

Planning, - Distributed or centralized decision making [79]

and - Decision-making algorithm convergence time [83], [84]

Learning Learning capability
- Flexibility of learning (type of learning methods supyeat} [16]
- Effectiveness of learning: performance vs. training tirbearning period [76]
Spectrum utilization (in terms of sum throughput, netwovkiable time)
Impact to other SU nodes or incumbent radios, in terms of
Overall Node - Transfer (net utility loss of the other nodes caused by oRenGde) [12]
Performance - SINR or INR [41]
Power efficiency (in terms of active time, battery life)
Communication cost for end user
Link reliability (in terms of BER, FER, or packet drop ratif§6]
Node Complexity In terms of signal processing power requirement, memorypfott, implementation costs, etc.
Overall CR node technology maturity
Maturity of key technologies:
- Software Defined Radio [59]
Technical Maturity - Analog-to-Digital Converter [36], [52]
- Multi-band RF transceiver and antennas
- Policy conformance enforcement [54]
- Artificial Intelligence [15], [16], [51]

inputs from others. Dr. Mitola defines a different functibngphysical layer observations, they can also be useful for the
classification of CR as follows: (i) pre-programmed, (ii)a)o decision processes in higher layers. For instance, positial
driven, (iii) context aware, (iv) radio aware, (v) capable dink gain information can help improve the performance of
planning, (vi) conducts negotiations, (vii) learns enmiment, topology formation algorithms. Channel coherence times an
(viii) adapts plans, and (ix) adapts protocols [43]. It slddae link SINRs influence link reliability and thus influence the
noted that this latter classification scheme does not assumselection of routing algorithms which is better suited foe t
strict progression, i.e., a CR may be able to adapt protoctdsel of disruption and mobility.

(level ix) but be unable to negotiate (level vi). Example link layer metrics include the following: collisio

3) Metrics for Accessing Node Performancdtumerous rates, mean channel access times, overhead ratios, packet
direct or indirect observations could be used by a CE Hrop rate, frame error rate (FER), and ARQ request rate.
evaluate the overall performance of a CR node. We briefiyetwork layers metrics may include mean and peak packet
discuss representative performance metrics at diffeegrtrs. delay, routing table or routing path change rate (for ad-hoc

At the physical layer, commonly used metrics includeand sensor networks), call setup time or call blocking rate.
signal to noise plus interference ratio (SINR) or interfex@to Many of these metrics have been used in wireless network
noise ratio (INR), bit error rate (BER), bandwidth efficignc performance evaluation in the literature, which howevee, a
and power efficiency. While these metrics are all derivedifroalso important for CR performance evaluations [63].
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TABLE IlI
EXAMPLE NETWORK-LEVEL PERFORMANCEMETRICS(OR "N ETWORK SCORECARD”) FOR SPECTRUM-SHARING NETWORKS
Domain | Performance Metrics
PU, SU awareness: PU/SU detection rate, false alarm raje [11
Situation Policy awareness [80]
Awareness Awareness of adaptation capability of each node in the mitwo
Awareness of network topology, routing protocol and awassnof network status and current goal
Cognitive | Adaptation Routing protocol and topology adaptability
Functions | Capability Cross-layer adaptation capability
Reasoning, Overall network 1Q level
Decision Making, | Decision-fusion overhead [81]
and Learning Decision-fusion time

Spectrum utilization in terms of
- Sum throughput or goodput [9], [78]
- Throughput of secondary system [17], [76]
- “Packing factor” (or “idle percentage”) in frequency, spaand time (even code) domains
- Spectrum utilization efficiency [27], [31], [32]
Impact to PU networks or other co-existing SU networks [$686]
- Increased average packet delay experienced by the incurftés [86]
- SINR, INR, or BER degradation at the PU receiver [86]
Overall Network - Increase in call drop rate, handover failure, originatfaiture, termination failure [66]
Performance End-to-end metrics: average throughput, delay, packet date, jitter [9]
Networking metrics:
- Rendezvous time (network access time) [41]
- Network availability [41]
Network reliability, scalability, and mobility support
Network security
- Robustness to malicious node [6], [54]
- Vulnerability to denial-of-service attack [5]
Application QoS
- Woice quality, e.g., mean opinion score (MOS) [28]
- Video quality, e.g., media delivery index (MDI) [73], distion, and peak-signal-to-noise-ratio (PSNR
- Response time for interactive data applications (e.dnefeor World Wide Web)
- Throughput for bulk data applications (e.g. FTP or disti#ll database synchronization)

e

Network Complexity In terms of signal processing power requirement, memorypfad, implementation costs, etc.
Overall CR core network technology maturity
Technical Maturity Maturity of key technologies for CR networks:

- MANET (scalability) [56]
- Policy conformance enforcement [54]

B. Network-Level Metrics The second ITU-R method is based on a special procedure
g%or re-designing the frequencies of operating radio stetiand

Similarly, we may evaluate a CR network in the followin A
se (3) to calculate the spectrum utilization.

four domains: (i) cognitive functionality, (ii) overall h&ork

performance, (iii) complexity, and (iv) technical matyrias U= AF/AF, 3)

shown in Table Ill. Some metrics, being evaluated over the

entire network, have similar definitions to the correspagdi where A F is the minimal necessary frequency band to permit

node-level metrics. We focus on the metrics for spectruthe functioning of the operational facilities of interesind

utilization efficiency and the DARPA XG program here.  AF, the frequency band being analyzed. The lower bound
1) Metrics for Spectrum Utilization Efficiencyfhe ITU- for U is achieved by determining th& F' of the optimum or

R Handbook on spectrum management presents two diffaear-optimum frequency use algorithm. We can then compute

ent methods for calculating spectrum utilization efficiencSUE using (2).

(SUE) [27], [31], [32]. In the first methodspectrum utilization  2) Metrics Adopted by the DARPA XG Prograrfihe U.S.

is determined by the amount of frequency, geometric spage @DAPRA XG program used a different set of performance

time used and may be calculated using metrics during the 2006 field tests. These performance osetri

were defined for the following three scenarios [41].

U=Bx5xT, « The XG network causes no harmful interference to non-
wherel is the amount of spectrum space usékt (& m? x s), XG systems in terms of abandon time (i.e., abandon a
B the spectrum bandwidtl$ the geometric space, arfdthe frequency channel within 500 ms) or interference limita-
time. SUE is computed as the ratio of information transtkrre  tion (i.e., maintain less than 3 dB SNR degradation at a
(denoted as\/) to the amount of spectrum utilized as protected receiver).

o The XG network forms and maintains dynamic con-
SUE=M/U=M/(BxSxT). 2) nectivity in terms of network formation/rendezvous time
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(establish an XG network of 6 nodes within 30 secondd)pss Rate (MLR), as defined in RFC 4445 [73]. It is designed
network join time (join a node to an existing XG networlkas a quality indicator for monitoring network intended to
within 5 seconds), and channel re-establishment tingeliver application such as streaming media, MEPG video,
(reestablish an XG network of 6 nodes within 500 ms)Voice over IP, or other information sensitive to arrival ém
o The XG network adds value in terms of reducing speand packet loss. The two-tuple provides an indication dfitra
trum management setup time (no pre-assigned frequégitter, a measure of deviation from normal flow rates, and a
cies increase deployment flexibility) and increasing spedata loss at-a-glance measure for a particular flow [73]at h
trum access (communications capacity) in terms of 60%een implemented in commercial devices (e.g., AgilentXN2
or more spectrum occupancy with a 6-node XG networlRlatform [1]).
Note that the above metrics defined for the XG program areComputed from network measurements, MDI is indepen-
used as a threshold for establishing early confidence in tthent of video codec and video sequence. The measurements
viability of dynamic spectrum access technologies [41].  are easy to carry out with low complexity [73]. Since the MDI
is measured at the receiver, there is no need for the original
C. Application Performance Metrics video, making it useful for live video applications. On the
A|th0ugh listed in Table I, app”cation performance metother hand, MDI should be used with caution. Video quality is

rics are quite different from generic network-level metric Usually a very complex function of the network layer statist

This is not only because they are the ultimate performant! should be used as an indicator for inferring media qyalit

measure, but also because they unifies the impacts of mosf8ly. Furthermore, for two MDIs with identical MLRs, the

the lower layer performance metrics. From this perspecti@bjective video quality may still be very different, sinite

application metrics are similar to utility functions thativibe has been shown that loss pattern has a significant effect on

discussed in Section IIl. However, utility functions aresed Video distortion [37].

on the abstract (and loose) concept of utility, while apifin b) Peak Signal Noise Ratio (PSNRPSNR is a Mean

metrics aim to model perception of human users. Square Error (MSE) based metric that measures the quality by
It is a great challenge to define proper performance metriginple pixel-to-pixel comparisons of the reconstructedewi

for general applications, which are highly diverse fromteadvith the original video. For a video sequencefoframes each

other. We take video, a spectrum-hungry application, as Baving N x M pixels with L-bit depth, PSNR is computed as:

example in this section and review performance metrics used . 9

in the literature and practice for evaluating the quality of { MSE = mz%@k [2(i, 4, k) = 2(i, 5, k)] (4)

video delivered through a network. Various video perforoen PSNR =10 x log 1f55-

metrics.can _be _roug_hly categ_orized intq th_e foI_Iowin_g tw%herex(i,j, k) and z(i, j, k) are the pixel luminance value

class_es. supjecnve V|d_eo qugllty and obj_ectlve video |twalin the (7, 7) location in thek-th frame for the original and

metrics, which are reviewed in the following.

1) Subjective Performance Metricsin subjective video reconstructed v_|deos, respect_wely. .
: . . . Compared with other metrics, PSNR is easy to compute
quality evaluation, a sufficiently large number of expeiitsw

. ) . . .and well understood by many researchers. However, the above

a chosen video sequence (alone or contrasting with thenatigi . ) - . .

video clip). Their opinions are collected and analyzed [55 omputauo_n requires thg or_lglnal video, making PSNR not
uited for live video applications. It has also been fourat th

-FI;hIETaSpgg_)f(l: h[ggis gii?egg/%pt\ige%y (;zz\lilt-ly-ur-eRprizeert I;L%E)metimes the PSNR does not conform to the subjective video

ultimate user perceived performance, which effectivelifies quah(t:))/ \I/?eag/e\-/\g!tortion Model Approachtf we assume that
the influences of the entire protocol stack. However, su L PP L .
approach is more expensive, and difficult to carry out a e source statistics are Laplacian distributed and the dis

' i ortion measureD(z,Z) = |« — Z|, then there is a closed-
repeat. The test results also heavily depend on the exper

IS ! . . ;
and preferences of the viewers, as well as many other fact Qum expression for the rate distortion function A%D) =
such as room illumination and display type.

?rﬁ%) [71]. Functions with simpler forms can be used to
2) Objective Performance Metric€Dbjective video quality

approximate this rate-distortion function [7]. For stréagn
measures are obtained by directly analyzing the receiebvi video, the overall distortion of a reconstructed vidBg can

flow or the reconstructed video. Such evaluation is easierth decom_p(:]s;d mtg ttvr\]/o %grts:tt.he d|stort|((j)nbcaltjsed b)_/ Is!gna
carry out than subjective approaches and the results aitg eag>mpressiont). an € distortion caused by fransmission

repeatable. Many objective video quality metrics are psejlo errorsD, as [67]
and adopt.ed in the pas_t (see [44], [50], [65] qqd refgrences Dy = Dy+w/(R— Ro)+r X p, (5)
from therein). Such metrics can be roughly classified adngrd ~—
to how they are computed: (i) from the received video packet
flow, (ii) from reconstructed video frames; and (iii) fromwhereD,, w, Ry, andx are coefficients to be determined for
theoretical rate-distortion models. We review repredema a specific video codec and video sequence, aride packet
metrics in each category in the following. loss probability.

a) Media Delivery Index (MDI):MDI is a metric com- Such rate-distortion function approach provides clogsgdaf
puted from received video packet flow. It consists of a twaxpressions that translates network delivery metrics tewi
tuple separated by a column: a Delay Factor (DF) and a Medistortion. It is therefore very useful for theoretical diees

D. D,
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of video streaming systems [33]. However, it still remaias t Additionally, the decision process could reside on a single
determine the coefficients. The coefficients cannot be tjrec radio or conceptually span a cluster or the entire network.
derived from commonly used signal statistics, but need to bee Goals of the radios— the objective(s) which guide

estimated by fitting the model to a subset of measured data the decision processes, e.g., maximize SINR, minimize
points from the distortion-rate curve [67]. It is also worth  device power consumption, minimize latency, maintain

noting that the average video packet loss ra)eg used. The a connected network. These are quantified by utility
impact of different loss scenarios is not modeled here [37]. functions.
« Operational context- the conditions in which the CR
I1l. FROM METRICS TOUTILITY FUNCTIONS— A network operates, e.g., propagation environment, mission
GAME-THEORETICPERSPECTIVE or network topology. Note that in a multi-layer CR,

the adaptations of one layer could alter the operational

As shown in Fig. 1, utility function and goal are impor- ;
context of the processes controlling other layers. For

tant components of a CE. Generally speaking, utility is an ) _ s )

assignment of values (numbers) to the current operatirig sta  €*@mple, higher layer topology choices will dictate which

such that the closer the CR comes to satisfying some goal, the lInk gains most influence the adaptations of the PHY.

greater the value assigned to the operating state. Utiligf  AS illustrated in Table 1V, varying any one of these parame-

tions can incorporate a large number of performance metri€$S - observations (O), actions (A), decision process¢bg)s

and are usually dynamic and application-specific. As we shdf), context (C) - can lead to radically different outcomesre

in the following, how nodes choose their utility functionnca When the remaining parameters are held constant. This wide

significantly impact network behavior. To further comptiza Variation in outcomes can be mitigated if we utilize an om-

matters, how utility functions impact network behavior caRiscient centralized controller, but in practice all obsgions

vary from situation to situation. could be imperfect and a completely centralized solutioy ma
For some CR applications or scenarios, the goal is charactept offer the requisite level of responsiveness when scaled

ized or dominated by a single objective. In these situatitmes 1O large networks. The issue of scaling indicates that some

utility functions used by a CE could be very simple and definétfgree of decision distribution will be necessary even ihgo

by some basic function of the goal, such as a monotorfiélaptations are capable of being performed in a centralized

function, a nonmonotonic (convex or concave) function, dPr collaborative) manner, perhaps in individual clust@fsus,

a logistic function (i.e., a sigmoid, arc-tangent, hypdido designing cross-layer CR networks to operate under varying

tangent, or the error function). When the goal is charanseri POliCy constraints, contexts, and goals while achievingireel

by multi-objective or competing objectives, the utilityniction Pehavior is a nontrivial task. _ _

could be more complicated. Section IV presents more details?) Modeling Networked BehaviorBecause of the inter-

about the features of some utility functions employed by &tive nature of CR networks, game theory is an important
prototype CE. tool for system modeling and analysis. In a traditional game

model of a CR network [45], each CR represents a player,
. . the adaptations available to each CR form the action set of
A. Challenging Issues for CR Design its associated player, and a quantification of each CR’s goal
In the following, we first discuss the interdependent natuggpplies the utility function for the associated player.idgte
of actions, goals, decisions, observations, and conte. Weration of adaptations by a network of CRs can then be
then present insights into these interdependencies framegamodeled as a normal form ganie= (N, A4, {u,}), where N
models of cognitive radio networks. denotes the set of players (CRs) of cardinalitandi € N
1) Network Performance Considerationdf we ignore specifies a particular playes represents the adaptation space
learning processes which are not generally assumed ton@inrigrmed asA = A; x - - - x A,,, whereA; specifies the action set
while a network is active [43], the behavior of a CR networkf player;; {u;} is the set of utility functionsy,; : A — R, i.e.,
is influenced by the following factors: the assignment of a real number to every possible combinatio
« Observations- the measurements or metrics, e.g., powef choices of actions by the radios to describe the valuestwhi
spectral densities (PSDs), collision frequency, latepoy, the radios assign to points iA. For notational convenience,
sition, by which CRs gain awareness of their operationale usea to denote an action vector wherein each player in the
environment. Observation processes could reside ongame has chosen an actia,to refer to the action chosen by
single device or be formed through the collective behaviptayeri, anda_; to refer to the vector formed by considering
of many devices. all actions other than the action choseniby
« Available actions- the various adaptations, e.g., power, This basic model can be extended by considering the
frequency, backoff timers, multiple access techniquespecific decision rulesj; : A — A; that guide the radios’
to which the radio is constrained by policy, capabilityadaptations and the decision timings, at which the deci-
and/or operational requirements. sions are implemented, to form the extended modeling tuple,
« Decision processes the algorithms which map obser-(N, A, {u;},{d;}, T) [45]. With this model it is sometimes
vations to adaptations, e.g., genetic algorithms or locebnvenient to usei(a) to refer to the collective application
searches. In general, this can be considered to subsumhé;(a) at the times specified by. To give an intuitive feel
the models used in reasoning processes such as mod@isvhat we are modeling, the term “decision rule” refers to
of the environment, radio capabilities, or the networksome well-defined process that controls a CR’s adaptations
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TABLE IV
EVEN WITH ALL OTHER PARAMETERS HELD CONSTANTVARYING THE OBSERVATIONS(Q), ACTIONS(A), DECISION PROCESSE$D), GOALS (G), OR
CONTEXT (C) CAN LEAD TO RADICALLY DIFFERENT OUTCOMES

[ 1 Scenario 1 I Scenario 2 |
g O | Interference at access point from other access poir s% O | Interference seen by clients
5| © A | Frequency (channel) © A | Frequency (channel)
E g D | Lowest interference channel g D | Lowest interference channel
§ kS G | Minimize interference IS G | Minimize interference
el C | Tent city C | Tent city
© Result | Converges to near-optimal frequency reuse pattern [46] || Result | Enters an infinite loop with probability 1 as network scald8][
g O | SINR at cluster head g O | SINR at cluster head
3] A | Frequency 3] A | Power
2 % D | Maximize goal % D | Maximize goal
2|8 G | Maximize SINR s G | Maximize SINR
< C | Isolated cluster C | Isolated cluster
Result | Network tends to converge to low interference states Result | Network tends to converge to self-jamming states
g O | Collisions g O | Collisions
o || © A | Transmission times © A | Transmission times
5 % D | Collaborate on times % D | Noncollaboratively choose times
3l & G | Maximize collisions 8 G | Maximize collisions
8 C | Isolated cluster C | Isolated cluster
Result | Rapid convergence to minimal interference state, adjlestgb Result | Slow (if at all) convergence, throughput as low as ALOHA
to different user priorities (1/e)
2 O | SINR at cluster head 2 O | SINR at cluster head
3] A | Power 3] A | Power
Ttg g D | Maximize goal g D | Maximize goal
8 kS G | Target SINR kS G | Maximize SINR
C | Isolated cluster C | Isolated cluster
Result | If target SINR is feasible, converges to target SINR [75]|| Result | Network tends to converge to self-jamming states
g O | SINR at cluster head g O | SINR at cluster head
3] A | Power 3] A | Power
5 g D | Punish (jam) radios deviating from target SINR g D | Punish (jam) radios deviating from target SINR
S g G | Target SINR g G | Target SINR
) C | Isolated cluster C | Isolated cluster with a jammer
Result | Network overcomes defection problems for significant Result | Network self-jams as it “punishes” the jammer
improvement in performance [40]

which has presumably been designed to increase the valueua autonomously rational, then we know that Nash Equdibri
u; with each adaptation. For example, a decision rule m&ME), i.e., action vectorg* such thatu; (a*) > u; (bi7a’ii),
specify discrete steps up or down in transmission power Wi € N,b; € A;, will be steady-states for the network [45].
response to observed channel conditions or may specifiLiitewise if we know that decision rules are exhaustive lvette
sequence of alternate frequencies to try when interferencaesponses, then the NE will be the only steady-state.
detected. However, some CRs are not implemented with well-Similarly, proper selection of radio utility functions catso
defined decision rules and are instead only lightly governbg used to guarantee network convergence and stabilityrunde
by goals, policies, and available adaptations. To handta baery broad assumptions about the radios’ decision rules. Fo
of these cases, we restrict our design framework to a seteofample, when we know that constitutes an exact potential
decision rules which we termautonomously rationalvhich game, a game for which there exists a potential function
satisfy (6). A — R such that all utility functions satisfy (8),

bi € di(a), bi #a; = ui(bi,a_;) > ui(as,a_;). (6)  wilbi,a—;) —ui(ai,a;) = V(bi,a_;) — V(ai,a_;),

A game theorist would refer to the behavior which resultsfro Vie N,Va€ A (8)
the use of decision rules of this form asbatter response  We know the network will converge as long as decision
dynamic Similarly, an exhaustive better response dynamigules are autonomously rational and care is taken to ensure
occurs when all decision rules satisfy (7). that adaptations are not synchronized (lest radios comtisly
. repeat conflicting decisions). Likewise, we know that when
a; & di(a) it 3bi € A; :ui(bi,ai) > wilai,a). (1) g z potential gar%e, isolated) steady-states will be stablela
Interestingly, even though an exact characterization obnstitutes a Lyapunov function [45]. Note that estabtighi
a network’s behavior depends on all the parameters tims broad convergence of decision rules is a property wiqu
(N, A, {u;},{d;},T), we can gain powerful insights intoto potential games [45]. With other normal form game models
network behavior by examining just the submodel = only more specific decision rules can be shown to converge.
(N, A, {u;}) which neglects the contribution of decision rule§or example, when a CR network can be modeled as a super-
and decision timings. For instance if we assume that th@sadmodular game [45] decision rules which locally optimizeteac



INVITED PAPER, UNDER REVIEW FORPROCEEDINGS OF THE IEEE SPECIAL ISSUE ON COGNITIVE RADIO 9

adaptation (known alsest responses game theory parlance) This permitted us to design an algorithm presented in [47]
will converge, but suboptimal (though autonomously radidn which employs utility functions that effectively correspb
adaptations can become trapped in loops in a supermodutathe Bilateral Symmetric Interaction game, but in praetic
game [45]. is just the radios minimizing their own observed interfa@n
levels. We have since applied similar techniques to petmeit t
adaptation of power control, consider prioritized trarssians,
and deployment in an ad-hoc network [48].

Clearly, useful insights about the behavior of a CR network 5 in general the actions, observations, decision ruldisy ut
can be gleaned by examining its associated game model, Rgfictions, and operating context are all highly interdefgert
ticularly when the CR network can be shown to be a potentighen examining the performance of a CR network. But if we
or supermodular game. Beyond serendipitous discovery ok@yt from the premise that our utility functions will séjis
function that satisfies (8), determining if a network can bge conditions of a potential game, then we can significantly
modeled as a potential game requires an examination of #a@ax the constraints on our decision rules. However, the
interrelationships between radios’ utility functions.deneral assyrance of convergence and stability is not accompagied b
for a network to be modeled as a potential game, a certgjf assurance of optimality so when adopting this approaeh ca
symmetry between the radios’ utility functions must exisir - myst still be given to the design of the observation processe
continuous, twice differentiable utility functions, theigtence \yhich can depend on the choice of objective functions if we

of a potential function (and thus existence of a potentiatgla o not assume the existence of a common knowledge database
can be established by demonstrating that (9) holds true. g,ch as the REM.

0%ui(a)  O%u,
wile) _0u) "y ie Nvaed (@) . N _
O0a;0a;  Oa;0a; C. Interaction Between Metrics, Utility, and Learning

B. Utility Function Selection

A similar relationship also holds true for supermodular A number of CR design problems can be characterized
games with action sets which are compact convex subsetshgfseveral non-commensurable and often competing measures

the real number liné&k as shown in (10) of performance, or objectives. Therefore, essentiallg, @R
0ui(a) decision-making process is a multi-objective or constdin
W >0, Vi,j € N,Va € A. (10) optimization problem [38], [61], [68]. Unfortunately, the
a; a;

is no generalizable technique for combining multiple goals
More generally, when the radios’ utility functions take ameo as the ideal combination of goals will be heavily context,
of the forms shown in Table V, the game is known to be and in particular, mission dependent. Several technigaes h
potential game. Thus if we choose utility functions for CBs tbeen proposed for combining goals including evaluating®ar
take one of those forms, we will be broadly assured that tleminance, weighted sums of goals, or products of nornthlize
network will be convergent and stable. goals, or more arbitrary nonlinear transformations.

One downside to this approach is that a potential game is notn general, when the goals of radios are combined with non-
guaranteed to converge to an optimal point. In fact, it wdndd interactive performance metrics where performance is anly
odd if it did as what is “optimal” is quite subjective. Instea function of the radio or cluster's own adaptations, e.gvicke
when working with a particular design objective in mind angower consumption by waveform, then the convergence and
when the broad convergence properties of a potential gaene stability properties of the network are frequently not efésl
desired, the relationship between the design objectivettaad (though network steady-states may be significantly imghcte
potential function in the third column of Table V should bédowever, other combinations can have significant effects on
first examined and then work backwards to the utility funusio the behavior of the network.
and implied observations of the second column. Conceptually, the performance of a CR network can be

For example, given an arbitrary design objecti@€a), improved if we permit the network to improve its performance
a potential game could be created by virtue of a Coopost-deployment by refining its parameters. Models can be
dination Game wherein all radios choose their actions tefined for better predictions of performance and thus bette
maximize O(a). In general, however, assigning the radios decisions; new contexts can be recognized and optimal adapt
utility function which seeks to directly optimize netwovkide tions learned. Learning can proceed by a variety of algarith
performance metrics requires that the radios be capableimfluding case-based and knowledge-based learning [&3], b
observing network-wide performance. Thus such an approdevioral learning (e.g., training a neural network or etpes),
would necessitate the additional design of some mechamism#nd logic-based learning (e.g, induction or deductionchEa
providing this network-wide awareness, e.g., the Radioi-EnVearning method has its relative strengths and limitations
ronment Map (REM) [80]. Alternately, some design objediveTherefore, synergistic combinations of these algorithmes a
have some inherent structure such that the utility funsticen expected to yield better results [83]. We refer interestedlers
be designed which only require locally available obseorei to [16] for more details about these learning techniques.

For instance, in [46] we first showed that a design objective o In a distributed system, learning to improve the accuracy
minimizing the sum of observed network interference leurels and efficiency of observation and classification processks w
an 802.11 network performing dynamic frequency selectiogenerally not negatively impact system robustness. For in-
exhibits a natural pairwise symmetry to the interferencege stance, reducing the bias or variance of existing obsenvati
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TABLE V
COMMON EXACT POTENTIAL GAME FORMS

| Game | Utility Function | Potential Function
Coordination Game ui(a) = C(a) V(a) = C(a)
Dummy Game ui(a) = Di(a—;) Via)=¢, ceR
Coordination-Dummy Game ui(a) = C(a) + Di(a—;) V(a) = C(a)
Self-Motivated Game ui(a) = S;i(a;) V(a) =3 ien Silai)
Bilateral Symmetric ui(a) = ZjeN\{i} wij(ai, a;) — Si(as), Via) =3 ien 23;11 wij(ai,az) — > ;e n Sila:)
Interaction (BSI) Game wherew;;(a;, aj) = wji(aj, a;)
Multilateral Symmetric ui(a) = Y geanses ws,ilas) + Di(a—s), | V(a) =3 gcon ws(as)
Interaction (MSI) Game wherews ;(ag) = ws j(as), Vi,j € S

perhaps by better matching models to context (e.g., moving WRAN applications, such as an active WRAN channel
from a Rayleigh to a Ricean model when a LOS component when PUs (re)appear.

is present) or by upgrading to more accurate algorithms,(e.g To obtain a convenient measure of the available radio
using a cyclostationarity approach over a simple windowggésource at a BS and the requested radio resource from CPEs,
PSD for signal detection/classification) will generalladeto g unitless metricRRU, was proposedRRU is an abstrac-
a system that more closely matches expected performancei@s from physical layer details (such as modulation/cgdin
observation variance has decreased. However, when lgarmiehemes and channel bandwidth), thus making the developed
spawns new processes, it is difficult to guarantee continugg algorithms generic. For example, the requif@BU for
robustness of the system. setup up a connection between the BS and CPE can be
Again, this will largely not be a problem for centralizedestimated by
or collaborative systems where we can conceptually integra R
any combination of observation, actions, decisions, g@eald RRUpeq = (14 o) =————,
contexts, but such systems might be limited in scalability, B x BWse
require additional overhead, and have longer responsestim&vherea is the overhead factor (unitless) that takes the over-
head of the WRAN protocol into consideration and can be
1IV. APPLICATIONS OFPERFORMANCEMETRICS AND determined by the WRAN system specificatiofsis the data
UTILITY FUNCTIONS IN AN 802.22 WRAN CE EsTBep rate of the new connection (in units of “b/s”) and determined
Having discussed the choices and interdependencies of f.the service typef is the spectral efficiency (in units of

formance metrics and utility functions, a remaining quesi 0/s/Hz") jointly determined by the highest applicable rued

is how to incorporate them in CR performance evaluation|§ltlon level and channel coding ratBW. is the bandwidth

In this section, we present selection of performance I’TE-;‘tl’ié)f the WRAN OFDM sub-carrier (in units of "Hz”) as
utility functions, and performance evaluation for a CE liest BW.. — TV Channel Bandwidth
developed at Wireless@Virginia Tech [83], [84]. The CE can s FFT Mode

be employed by an 802.22 WRAN Base Station (BS) f@for OFDMA/TDD-based WRANRRUTregindicates the num-

real-time radio resource management of secondary usershét of OFDM sub-carriers that needs to be allocated.
currently underutilized TV spectrum.

(11)

(12)

_ _ B. Utility Functions Selection
A. Metrics Selection The global utility function for the WRAN CE testbed is
In IEEE 802.22 WRAN, the services and QoS requiremendgfined by
are quite similar to those in 802.16 WiMAX [24]. The follow- Ugtobal = H ()" | (13)
ing performance metrics were considered for the CE testbed '

development. _ ) ) ) wherew; is the weight applied to théth performance metric

1) w1 = QoS satisfaction of all connections, in terms of thg, ) pifferent weight vectors could be applied to adjust the
average utility of all downlink and uplink connectionsjity function. Similar to the geometric mean, (13) aceen
between the BS and customer premise equipment (CPates ow utility metrics, thus providing a fair and baladc

2) uo = spectral efficiency, in terms of the number of availygmpination of various performance metrics.
able candidate channels after allocating radio resourcesgy the WRAN BS CE testbed, the global utility o)
to a given number of connections. This metric is Morg gpdivided between individual CPE utilities.{.) and the
important for multi-cell scenarios or a single cell serving,ormalized spectral efficiency of BSi£s) as
a large number of CPEs.

3) us = power efficiency, in terms of the transmit power N o
of individual CPEs. This metric is more important for Uglobal = (H Uf;pe> X U, (14)
mobile or portable user devices or overlapping WRANS. i=1

4) uy = adaptation time when the CE is exposed to a newhereN is the total number of active CPEs connected with the
scenario. Fast adaptation is critical for time-sensitiS, andw; andws are the weights for the geometric mean of

i

N
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Fig. 2.
alternative utility functions.

Utility function (g1) employed in the WRAN BS CE Testbed andFig. 3. Spectral efficiency functiory{) employed in WRAN BS CE Testbed
and alternative utility functions.

individual CPE utilities and the spectral efficiency of th8,B and also indicates radio resource utilization of this clehnn
respectively. The weights can be determined by the WRARbr the CE testbed,; 5 is defined as
operator based on its priority and goal.
There are many candidate utility functions for defining the i =1+ tanh(MQU‘W”““6 — RRUC“P“C“?/) ., (18)
individual CPE utility and the spectral efficiency of the BfS, 9RRU
shown in Fig. 2 and Fig. 3. For the CE testbed, the individuglhere the RRU,uuitape iS the number of available RRU
CPE utility represents the user’s degree of satisfactiothéo for the i-th WRAN channel at the BSRRU.apacity IS the
overall radio resource management, which is defined as  maximal number of available subcarriers of a WRAN channel;
2 -1 -1 2 1 -1 orgryu 1S spread parameter for the modified hyperbolic func-
tepe = F1(py " Py ) X fa (Roy Ro) X fo(B Po ™), (19) o 'y ¢ is also monotonic and bounded by 0 and 1, as shown
whereP,, R, and P, are the measured or estimated BER, data Fig. 3. The rationale to adopt such a modified hyperbolic
rate, and transmit power (linear) of the CPE, respectivBly; tangent function (18) is that it helps the CE to squeeze the
Ry, and P, are the target BER, data rate, and transmit powepectrum used by the WRAN BS through the optimization
of the CPE, respectively. Thgfunctions in (15) are modified process. For example, the solution will produce a lower BS
hyperbolic tangent functions, utility (upg) if the CPEs are assigned to subcarriers spread

1 . into two or more WRAN channels as compared to the more
filz,xo;mi,040) = 3 {tanh[log (—) — m] o; + 1} , spectral efficient solution in which the CPEs are assigned to
To
1=1,2,and3, (16)

subcarriers within the same WRAN channel.

wherez andz, are the performance metric and its target valug; . cg performance Evaluation Methodology
respectively; andy and o are the threshold and the spread
parameter, respectively.

The modified hyperbolic tangent function is a type

As discussed, CE performance evaluation is very challeng-
0ilng for CR developers, equipment vendors, and regulators be
sigmoid function that can accommodate a large range use CR_ qperates very differe_n_tl_y from traditional radjpe
performance variations and capture the value of the servies cfjl_embglﬂy, Iearn_lng cap_abllltles, an_lc_ihthe _demargjlor li
to the user quite naturally [74], [83]. If a solution does nognpredictable op_eratlon envwonments. ere 1S a conmgelll
meet the target goal, the utility is decreased sharply. esingeed f(?r new testing methodologies for CE undervarloumradl
solutions that result in excessively high QoS provideelittlscenar'os' We believe thqt the most a(.:clurate. predlcFora)_f th
value to the user, the increase of utility is marginal. As ban future performance of CR is to emulate it in a similar sitaafi

seen from Fig. 2, the employed utility function in CE testbell°! unlike the behavior-based inte.rview. i , ,
is monotonic and bounded by 0 and 1. The threshg)dafd We  propose REM-ba_sed radio scenano—dnyen testing
spread parameten) are chosen such that when the utility i{REM-SDT) as a generic approach to evaluating the CE

0.95 when the metrica achieves the target:() and is 0.05 Performance [83], [84], as illustrated in Fig. 4. The REM
when the metric is one decade away could also be used as a virtual “radio environment genérator

The normalized BS spectral efficiency{s) is defined as together with other test equipmgnt, suph as arbitrary vmmaf_
generators. The CR under test is subjected to various tiealis
situations stored in the REM, which could be in form of
machine-readable XML files. One way to generate sufficient
where M is the total number of channels supported by thesting scenarios is to exploit the REM and apply the Monte
BS; u; 4 is the spectral efficiency for theth WRAN channel Carlo simulation method to produce a large amount of testing

T
UBs = Mzz'ﬂ Upg, 17)
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[He SEE ®| scenarios (including LS ’
I} N = waveforms) for testing. : " 2000 -
1 - » :
. Waveform generator . | { cr(cr)
[HE s 1 Junder test 7
|: ' S ———— : [ = 1500}
: _ | Monitor the adaptations | l £
=< < and evaluate the 5
: \// )| performance of CR (CE) 1 §
|i Tester engine and GU 1 S 1000
____________________________ g
CR (CE) Tester <
Fig. 4. lllustration of REM-Based Scenario-Driven CR Tegt{REM-SDT). 500
CR Tester can be viewed as a CR as well.
TABLE VI 0 : : :
o 50 100 150 200
SIMULATION PARAMETERS FOR THEWRAN BS CE TESTBED Number of new connections
Parameter Value or Range . . ) . )
| | 9 | Fig. 5. Average adaptation time [83]. By leveraging the RE\, adaptation
No. of BSs 1 time of WRAN CE can be greatly reduced.
Cell Radius 33 km
No. of New Connections| 1 ~ 256
to be Setup

Distribution of CPEs Random uniformly distributed or clustered exceeds the normal Capacity of the BS) should be considered

: N ) _ id
Qg;i;’:ezef?g;e x?c;‘;i'_ i%g?(%?statgzte?gggm,:, when testing the WRAN CE. It turns out to be a cost-efficient

CPEs and QoS (Target| Low Data Rate: 250 kbps, target BER)—6 | testing approagh since po;sible problems can be identified
BER) High Data Rate: 750 kbps, target BER)—6 | before the CE is deployed in the real network.

;hif":e' _M‘;‘ée' - gVF\’gl\'}A‘ﬁaD”S% S TR T T In the simulations, a number of new connections are added
ultiplexing/Duplexing ownlink to uplink ratio 3: .

FFT Mode 2,048 (2,048 sub-carriers per TV channel) to the WRAN BS CE te.Sthd and twenty five runs are
(TV) Channel BW 6 MHZ conducted for each scenario. Note that both GA-based CE and
No. of Total TV Chan-| 8 CKL-based CE have been implemented in conjunction with a
nels Supported at the B$ local search for fine-tuning the final solution. As can be seen
Protocol Overheada) | 0.1 from Fig. 5, the WRAN BS CE adapts much faster when
fRUcaW“y 2838 using the CKL algorithm than when using the GA, especially
W’;%fn VecorTor o] 1 0.9, 07] under complicated situations. Fast adaptation is critfoal

time-sensitive WRAN applications, such as evacuating a TV
channel for PUs. Fig. 6 shows that the GA-based WRAN CE
can produce a consistently better average utility than the L
scenarios. For example, the CR tester could emulate varigdfsed CE or CKL-based CE. It also indicates that the LS
PU waveforms with certain usage patterns in certain frequierand CKL may simply not be able to find a viable solution
bands and then measure the performance of the CR under {ggler some extreme radio scenarios (e.g., when the required
through its RF emission. This can indicate the cognitioelev RR(7 from CPEs approaches the capacity limit of a WRAN
and the effects of its adaptations. The CR tester can ben&hm@s). This is because GA is a generic search and optimization
the performance of the CE under test against that of som#®| which is independent from or insensitive to the specific

baseline CR systems or some performance bounds. radio scenario and/or utility function in use. However, the
rules and experience employed in CKL may only be useful
D. CE Testbed Experiment Results for closely matched situations with the similar utility fttion.

Simulation parameters for the WRAN BS CE testbed a;léhe case library and kn(_)\_/vledge t_)ase may need to be updated
cordingly when the utility function of CE changes.

summarized in Table VI. The CE testbed can run differeAt ) )
learning algorithms such as local search (LS), genetic-algo OUr experiments with the CE testbed also show that the
rithm (GA), and REM-enabled case- and knowledge-basﬁﬁ'ecuon ofglo_ball gtlllty_functlon (geometrllc mean vsimgae
learning algorithm (REM-CKLY. The CE makes decisions onaverage) has significant impact on the ach|eve_d perfc_>rn_m‘nce
which TV channel(s) to use, which modulation and codinSR netw_ork nodes:_whenthe sample average is maX|m|2(_ed!the
scheme to be employed by the BS and CPE, the transmit poWgPMetric mean might be very low due to the large deviation
level of the BS and CPE, and the subcarrier(s) allocated @k individual utilities. It also indicates that the impadtusing
each connection. different global utility functions would be more apparent f

We employ REM-SDT to evaluate the performance of thé CR network consisting of a small number Qf nodes. For
WRAN CE through a series of test scenarios described ¢ CE testbed, the reason to choose geometric mean for the
XML files [83]. Note that not only the typical radio scenarioglobal utility is to provide “fairness” in QoS satisfactidor

but also extreme scenarios (e.g., the number of active CP2¥&Ty CPE regardless its location in the WRAN service area,
since the CPEs might be sparsely distributed in a very large

1Refer to [83] and [85] for more details about these algorithm area with the cell radius up to 100 Km.
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network simulation and mainly focused on layer-2 and |&3.er-
It is critical to incorporate faithful PHY models into thewmls

(or to improve the their existing PHY models), without ghgat

] increasing the code complexity and simulation execution
time. How to make tradeoffs between CR network simulation
fidelity (for various layers), reliability, and complexitgs
well as incorporating the dynamic environmental inforroati

. is a challenging issue. The performance metrics and utility
L functions employed in the studied WRAN CE testbed were
defined in a heuristic manner. Alternate metric or refined

I ©
SO w 9 o
©w O © o
T T
L L

Average total utility
o
e 3
~ ol

o
o
a

0.6 H
REM-CKL utility function that can improve achievable performande o

R N e a WRAN merits further research. Other interesting research

05 0 40 60 80 100 120 140 160 180 issues include (i) development of a generic CR network

Number of new connections simulation and testing tool (perhaps based on the REM-SDT

Fig. 6. Average total utility [83]. The REM-CKL closely agpdmates the approach); ,(”) standardization of the performance metaiod

performance of the more complex GA solution. benchmarking methods for specific CR networks; and (iii)
standardization of sets of REMs to facilitate comparison of
CR algorithms and architectures among researchers.

V. CONCLUDING REMARKS
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