Cognitive Radio: Basic Idea

- Software radios permit network or user to control the operation of a software radio
- Cognitive radios enhance the control process by adding
 - Intelligent, autonomous control of the radio
 - An ability to sense the environment
 - Goal driven operation
 - Processes for learning about environmental parameters
 - Awareness of its environment
 - Signals
 - · Channels
 - Awareness of capabilities of the radio
 - An ability to negotiate waveforms with other radios

Spectral Coherence Function

Spectral Coherence Function
$$C_x^{\alpha} = \frac{S_x^{\alpha}(f)}{\sqrt{S_x^0(f + \alpha/2)S_x^0(f - \alpha/2)}}$$

- Normalized, i.e., $|C_x^{\alpha}(f)| \le 1$
- Terminology:
 - $-\alpha$ = cycle frequency
 - f = spectrum frequency
- Utility: Peaks of C correspond to the underlying periodicities of the signal that may be obscured in the **PSD**
- Like periodogram, variance is reduced by averaging

The Neuron and Threshold Logic Unit

- Several inputs are weighted, summed, and passed through a transfer function
- Output passed onto other layers or forms an output itself
- Common transfer (activation) functions

- Step
$$f(a) = \begin{cases} 1 & a > \theta \\ 0 & a \le \theta \end{cases}$$

- Linear Threshold $f(a) = a - w_{n+1}$

- Sigmoid $f(a) = \frac{1}{1 + e^{-(a-\theta)/\rho}}$

- tanh

 $1 + e^{-(a-\theta)/\rho}$ $f(a) = \tanh\left(\frac{a-\theta}{\rho}\right)$

Language Capabilities and Complexity

· Increasing capabilities significantly increases complexity

Language	Features	Reasoning	Complexity
XTM	Higher order relationships	None	O(N)
RDF	Binary Relationships	None	O(N)
RDFS	RDF plus subclass, subproperty, domain, and range	Subsumption	O(N ^m)
OWL Lite	RDFS plus some class constructors; no crossing of metalevels	Limited form of description logic	<i>O</i> (e ^{<i>N</i>})
OWL-DL	All class constructors; no crossing of metalevels	General description logic	<∞
OWL Full	No restrictions	Limited form of first order predicate logic	?

Modified from Table 13.1 in M. Kokar, The Role of Ontologies in Cognitive Radio in Cognitive Radio Technology, ed., B. Fette, 2006.

Example Application:

 Overlay network of secondary users (SU) free to adapt power, transmit time, and channel

Transmission range of radio node (PU or SU)

450 meters

50 packets

50 packets

70 packets

- Without REM:
 - Decisions solely based on link SINR
- With REM
 - Radios effectively know everything

Upshot: A little gain for the secondary users; big gain for primary users

From: Y. Zhao, J. Gaeddert, K. Bae, J. Reed, "Radio Environment Map Enabled Situation Aware Cognitive Radio Learning Algorithms," SDR Forum Technical Conference 2006.

An IRN 802.11 DFS Algorithm

- Suppose each access node measures the received signal power and frequency of the RTS/CTS (or BSSID) messages sent by observable access nodes in the network.
- Assumed out-of-channel interference is negligible and RTS/CTS transmitted at same power

$$u_{i}(f) = -I_{i}(f) = -\sum_{k \in N \setminus i} g_{ki} p_{k} \sigma(f_{i}, f_{k})$$

$$\sigma(f_{i}, f_{k}) = \begin{cases} 1 & f_{i} = f_{k} \\ 0 & f_{i} \neq f_{k} \end{cases}$$

$$g_{jk} p_{j} \sigma(f_{j}, f_{k}) = g_{kj} p_{k} \sigma(f_{k}, f_{j})$$

802.11y

- Ports 802.11a to 3.65 GHz 3.7 GHz (US Only)
 - FCC opened up band in July 2005
 - Ready 2008
- Intended to provide rural broadband access
- Incumbents
 - Band previously reserved for fixed satellite service (FSS) and radar installations including offshore
 - Must protect 3650 MHz (radar)
 - Not permitted within 80km of inband government radar
 - Specialized requirements near Mexico/Canada and other incumbent users
- · Leverages other amendments
 - Adds 5,10 MHz channelization (802.11j)
 - DFS for signaling for radar avoidance (802.11h)
- Working to improve channel
 appoundment signaling
- announcement signalingDatabase of existing devices
 - Access nodes register at http://wireless.fcc.gov/uls
 - Must check for existing devices at same site

